Advanced MembranesPub Date : 2025-01-01DOI: 10.1016/j.advmem.2025.100141
Muhammad Inam Bari, Bende Merve Kayhan, Bengü Bozkaya, Aykut Argönül
{"title":"Rejuvenation of reverse osmosis polyamide membranes degraded by chlorine in the presence of ferric chloride","authors":"Muhammad Inam Bari, Bende Merve Kayhan, Bengü Bozkaya, Aykut Argönül","doi":"10.1016/j.advmem.2025.100141","DOIUrl":"10.1016/j.advmem.2025.100141","url":null,"abstract":"<div><div>Reverse osmosis (RO) polyamide membranes are widely used for water treatment applications. However, certain processes such as wastewater reuse require regular membrane cleaning and disinfection with oxidants, which can lead to early membrane degradation. Furthermore, some metal ions present in the water can act as a catalyst for further accelerating the degradation. This early degradation of RO membranes poses significant challenges, resulting in operational inefficiencies, early disposal of membranes, and elevated operational costs. Fortunately, there is the possibility of recovering some part of this performance loss by means of chemical treatment through rejuvenating agents. This study aims to investigate the effectiveness of a commercially available rejuvenating agent containing tannic acid for restoring salt rejection and permeability parameters on degraded thin-film polyamide membranes. The membranes were first degraded using 250 ppm sodium hypochlorite (NaOCl) and 0.05 ppm ferric chloride (FeCl<sub>3</sub>) at various pH levels (pH = 4, 7 and 9). After applying the rejuvenation treatment to the degraded membranes, the efficiency of the rejuvenating agent was determined based on the improvement achieved for performance testing with respect to salt rejection and permeability. Analytical characterization of the membranes was carried out with Fourier Transform Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR). It was found that the chlorine degradation of membranes was accelerated in the presence of FeCl<sub>3</sub> at all studied pH levels but more prominently in the acidic region. This acceleration effect was attributed to the formation of (<span><math><mrow><mo>·</mo><mtext>OH</mtext></mrow></math></span>, <span><math><mrow><mo>·</mo><mtext>OCl</mtext></mrow></math></span>) radicals. Under the conditions studied in this work, rejuvenating agent treatment effectively enhanced the salt rejection capability of the degraded membranes but was unable to restore the permeate flux.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100141"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143678398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced MembranesPub Date : 2025-01-01DOI: 10.1016/j.advmem.2025.100156
Yuting Wang , Bin Yan , Jiaying Liu , Runkai Wang , Pinhua Rao , Yang Liu
{"title":"Advances in MOF membrane strategies for selective lithium extraction from salt lake brine","authors":"Yuting Wang , Bin Yan , Jiaying Liu , Runkai Wang , Pinhua Rao , Yang Liu","doi":"10.1016/j.advmem.2025.100156","DOIUrl":"10.1016/j.advmem.2025.100156","url":null,"abstract":"<div><div>Metal-organic framework (MOF) membranes have emerged as a promising solution for lithium extraction from salt lake brines due to their tunable pore structures and high specific surface areas. Their exceptional selectivity for Li<sup>+</sup>, combined with efficient extraction and robust performance in complex ionic environments, positions MOF membranes as a key technology for low-concentration lithium extraction. However, meeting industrial-scale demands requires not only enhancing membrane selectivity and permeability, but also addressing long-term stability and reusability under harsh conditions. This review provides a comprehensive overview of recent advances in MOF-based membrane materials for Li<sup>+</sup> extraction, focusing on both inorganic and organic substrate-supported configurations. Strategic approaches in structural design such as the selection of metal nodes, ligand modification, and encapsulation of active molecules, and growth control techniques to achieve precise pore architectures are discussed. Furthermore, methods for enhancing membrane robustness through multilayer and composite structures to improve antifouling properties and durability are outlined. Finally, the challenges and emerging trends are also proposed for sustainable and high-efficiency lithium extraction. This work offers valuable insights and theoretical support for the ongoing technical innovation and industrial application of MOF membranes in lithium extraction.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100156"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144312869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced MembranesPub Date : 2025-01-01DOI: 10.1016/j.advmem.2025.100161
Xinchen Xiang , Zheng Cao , Yukun Qian , Dan Lu , Jiancong Lu , Jinyan Wang , Shiyu Zhou , Lijun Liang , Zhikan Yao , Lin Zhang
{"title":"Evaluating and advancing large language models for nanofiltration membrane knowledge tasks","authors":"Xinchen Xiang , Zheng Cao , Yukun Qian , Dan Lu , Jiancong Lu , Jinyan Wang , Shiyu Zhou , Lijun Liang , Zhikan Yao , Lin Zhang","doi":"10.1016/j.advmem.2025.100161","DOIUrl":"10.1016/j.advmem.2025.100161","url":null,"abstract":"<div><div>Nanofiltration (NF) is a rapidly growing field, resulting in a surge of publications with diverse focuses. It's challenging for researchers to quickly find key information from the vast amount of publications. Large language models (LLMs) have shown promise in analyzing article and reasoning about knowledge in some scientific fields, but their effectiveness in membrane research is unclear. Here, we introduced the first benchmark specifically designed for membrane studies and used it to systematically evaluate six general-purpose LLMs (i.e., Claude-3.5, Deepseek-R1, Gemini-2.0, GPT-4o-mini, Llama-3.2, and Mistral-small-3.1). Our findings revealed that the complexity and depth of NF knowledge pose a significant challenge for these LLMs, leading to poor performance, particularly in tasks involving membrane mechanisms. To enhance LLMs' using in this field, we developed a specialized NF database and integrated it with the LLMs using Retrieval-Augmented Generation (RAG). RAG significantly improved performance across all models, with average gains of 18.5 % on Question type tasks and 10.8 % on Reasoning type tasks. Moreover, in areas such as membrane fabrication and characterization, several models with RAG demonstrated performance exceeding that of human experts. These results suggested that RAG is a promising strategy for leveraging LLMs in NF research. This study introduced a new path for applying LLMs to membrane research and proposes a professional benchmark to ensure the reliable and effective use of LLMs.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100161"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144588192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced MembranesPub Date : 2025-01-01DOI: 10.1016/j.advmem.2025.100163
Yan Zhu, Danwei Huang, Hongbo Xie, Zheyuan Liu, Fei-Fei Chen, Yan Yu
{"title":"Ultrathin mineral interlayers regulate interfacial polymerization of polyamide nanofiltration membranes via multiple non-covalent and coordination bonding for rapid molecular separation","authors":"Yan Zhu, Danwei Huang, Hongbo Xie, Zheyuan Liu, Fei-Fei Chen, Yan Yu","doi":"10.1016/j.advmem.2025.100163","DOIUrl":"10.1016/j.advmem.2025.100163","url":null,"abstract":"<div><div>Polyamide (PA) nanofiltration membranes have raised considerable interest in the realm of water purification. However, balancing permeability and rejection remains a critical challenge in membrane science and technology. Herein, we report that weak non-covalent hydrogen bonds and strong coordination bonds between ultrathin calcium silicate (UCS) interlayers and piperazine (PIP) powerfully control its diffusion. Theoretical calculations reveal that coordination bonds dominate PIP binding on UCS with an adsorption energy of −443.83 kJ mol<sup>−1</sup>, thereby impeding its movement. The diffusion coefficient of PIP diminishes by 14 % upon the incorporation of UCS, as evidenced by molecular dynamics simulations. As a consequence, a superhydrophilic, smooth, loose, and ultrathin (∼18.9 nm) PA separation layer is created. The as-obtained UCS-interlayered PA possesses a remarkable water permeance of 31.7 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup> that is 2.2-fold higher than that of UCS-free PA, while dye rejection rates keep a high level. Furthermore, the UCS-interlayered PA demonstrates exceptional antifouling performance with a 95 % flux recovery ratio and long-term stability during 16-h filtration. The study highlights the pivotal role of mineral interlayers in tailoring amine monomer diffusion via multiple interfacial interactions for advanced water treatment applications.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100163"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144557142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced MembranesPub Date : 2025-01-01DOI: 10.1016/j.advmem.2025.100129
Weiwang Lim , Wen He , Ji Ma , Shabi Ul Hassan , Jingcheng Du , Qian Sun , Dong Cao , Jian Guan , Hongjun Zhang , Jiangtao Liu
{"title":"Membranes with hollow bowl-shaped window for CO2 removal from natural gas","authors":"Weiwang Lim , Wen He , Ji Ma , Shabi Ul Hassan , Jingcheng Du , Qian Sun , Dong Cao , Jian Guan , Hongjun Zhang , Jiangtao Liu","doi":"10.1016/j.advmem.2025.100129","DOIUrl":"10.1016/j.advmem.2025.100129","url":null,"abstract":"<div><div>Mixed matrix membranes (MMMs) are crucial for CO<sub>2</sub> separation and offer a potential solution to overcome conventional gas separation. Nevertheless, MMMs face challenges due to interfacial defects in membranes, which results in poor gas separation performance. In this study, γ-cyclodextrin (γ-CD) based MMMs were synthesized via a simple solution casting method. γ-CD could be molecularly dispersed in Matrimid matrix up to 3 wt% loading without defects at the interfaces in membranes. ATR-FTIR results showed that γ-CD based MMMs have significant peak with loading increases. Leveraging the high CO<sub>2</sub> solubility and high porosity of γ-CD, Matrimid/γ-CD based membranes exhibit improved CO<sub>2</sub>/CH<sub>4</sub> selectivity. Especially, the CO<sub>2</sub> permeability of Matrimid-3%-CD membrane increased by 40 % (from 13.35 to 18.71 Barrer) and CO<sub>2</sub>/CH<sub>4</sub> increased by 99 % (from 36.08 to 71.96), respectively compared to pristine Matrimid membrane. This demonstrates that the incorporation of γ-CD in Matrimid membrane significantly improves both permeability and selectivity. The Matrimid-γ-CD membrane also demonstrated superior long-term operation stability after aging 593 days. Thus, this study lays the foundation for the development of γ-CD-based membranes with high CO<sub>2</sub>/CH<sub>4</sub> selectivity, providing potential pathways for CO<sub>2</sub> separation processes in CO<sub>2</sub>/CH<sub>4</sub> separation.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100129"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143099935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced MembranesPub Date : 2025-01-01DOI: 10.1016/j.advmem.2025.100143
Shilong Qi , Rong Fan , Xinwei Su , Hao Zhang , Yingzi Cui , Benkun Qi , Xiangrong Chen , Yinhua Wan , Jianquan Luo
{"title":"Membrane technology for sterilization and virus elimination of biopharmaceuticals: Fouling matters","authors":"Shilong Qi , Rong Fan , Xinwei Su , Hao Zhang , Yingzi Cui , Benkun Qi , Xiangrong Chen , Yinhua Wan , Jianquan Luo","doi":"10.1016/j.advmem.2025.100143","DOIUrl":"10.1016/j.advmem.2025.100143","url":null,"abstract":"<div><div>Membrane-based sterilization and virus removal have become an essential approach for Quality Control and Quality Assurance in biopharmaceutical manufacturing, offering significant advantages over traditional thermal and chemical methods. This green technology preserves drug integrity without chemical additives. However, the complex interactions between biomolecules and membrane surfaces often lead to membrane fouling and potential microbial breakthrough. This review first comprehensively interprets the physiochemical properties differences among four biopharmaceuticals (protein, nucleic acid, glycoconjugate vaccine and virus), and then, analyzed the major challenges facing in four biopharmaceuticals sterilization and virus removal. The separation mechanisms of sterilization and virus removal are discussed focusing on both physical (size exclusion) and chemical (electrostatic interactions, hydrophobic adsorption) properties. Particular attention is given to membrane fouling mechanisms and advanced mitigation strategies at the membrane-biomolecule interface. By integrating fundamental scientific principles with practical engineering considerations, this review offers valuable insights for optimizing downstream bioprocessing and advancing membrane technology in the biopharmaceutical industry.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100143"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143769142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mass transfer in membrane contactors for separating levulinic acid, formic acid, and furfural from biomass hydrolysate with physical organic solvents","authors":"Chatcha Saengsen , Laksamee Jeanmard , Litavadee Chuaboon , Wichitpan Rongwong","doi":"10.1016/j.advmem.2025.100151","DOIUrl":"10.1016/j.advmem.2025.100151","url":null,"abstract":"<div><div>Levulinic acid (LA), formic acid (FA), and furfural were separated from an aqueous solution using membrane contactors with organic solvents. The aqueous mixture, simulating LA production's biomass hydrolysate from, contained 7 % LA, 3 % FA, and 4 % FF by weight. The mass transfer coefficients of solutes followed the order: methyl isobutyl ketone (MIBK) > toluene > 2-propanol > 1-octanol, while solute extraction followed FF > FA > LA. FF extraction was more dominated by the resistance of aqueous phase compared to other solutes. The membrane mass transfer resistances could not be neglected and affected the overall mass transfer performance. Using the membrane contactor could improve the FF selectivity compared to an equilibrium extraction technique. The FA selectivity over LA was investigated and a reactive organic solvent such as Aliquat336 in MIBK as well as replacing the organic phase with another aqueous phase enhanced the FA selectivity.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100151"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144099674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced MembranesPub Date : 2025-01-01DOI: 10.1016/j.advmem.2025.100158
Dinesh K. Behera , Fan Wang , Bratin Sengupta , Qiaobei Dong , Weiwei Xu , Shiguang Li , Miao Yu
{"title":"Restricting ionic liquid in a network comprising of GO/CNT as a separation membrane for efficient CO2 capture","authors":"Dinesh K. Behera , Fan Wang , Bratin Sengupta , Qiaobei Dong , Weiwei Xu , Shiguang Li , Miao Yu","doi":"10.1016/j.advmem.2025.100158","DOIUrl":"10.1016/j.advmem.2025.100158","url":null,"abstract":"<div><div>The release of carbon dioxide (CO<sub>2</sub>) to the atmosphere remains a critical challenge in addressing climate change, with emissions from power plants being a primary contributor. Membrane-based separation processes offer cost-effective, robust, and energy efficient alternatives to CO<sub>2</sub> capture from power plants. Ionic liquids (IL), known for their high CO<sub>2</sub> affinity, low vapor pressure, and high thermal stability, are propitious materials for such separations. In this study, we try to address major challenges currently restricting IL-based membranes including the porous structure for loading IL and the loading procedure onto the porous structure. An ultrathin (∼230 nm) 2–dimensional composite network comprising of graphene oxide (GO) sheets intercalated carbon nanotubes (CNT) spatially confining IL targeting high CO<sub>2</sub> permeance was designed and fabricated. An IL, 1-ethyl-3 methylimidazolium tetrafluoroborate ([EMIM][BF<sub>4</sub>] was used as the active separating medium. This GO/CNT hybrid network not only stabilizes the IL within the nanochannels because of interactions between cations of IL and negatively charged functional groups on GO (carboxyl, hydroxyl and carboxy groups) but also facilitates faster transport (increased nanochannels because of CNT incorporation) yielding a CO<sub>2</sub> permeance of ∼600 GPU (one order of magnitude higher than reported membranes employing the same ionic liquid) and a CO<sub>2</sub>/N<sub>2</sub> selectivity of 62 under humid conditions and elevated temperatures (up to 80 °C). Our approach provides a modified strategy of using ionic liquids in the solution form as opposed to most studies using pure form for obtaining a scalable, ultrathin, stable supported IL membrane.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100158"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144518964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced MembranesPub Date : 2025-01-01DOI: 10.1016/j.advmem.2025.100162
Wanshuang Zhou , Cong Yu , Qiang Chen , Shi-Peng Sun , Xinbo Wang
{"title":"Chiral membrane with intrinsic microporosity for enantioselective electrochemical recognition of tryptophan enantiomers","authors":"Wanshuang Zhou , Cong Yu , Qiang Chen , Shi-Peng Sun , Xinbo Wang","doi":"10.1016/j.advmem.2025.100162","DOIUrl":"10.1016/j.advmem.2025.100162","url":null,"abstract":"<div><div>Enantioselective recognition and separation of chiral molecules are pivotal in biomedical and pharmaceutical fields due to their distinct biological activities. Drawing inspiration from biological transmembrane systems, we developed a chiral-selective nanofluidic platform by embedding BINOL-derived stereogenic centers into polymers of intrinsic microporosity (PIMs). The resulting (R)-HBIN-Is membrane mimics the stereoselective capabilities of biological transporters, demonstrating a selectivity coefficient of 2.5 for D-tryptophan over L-tryptophan via electrochemical discrimination. This study marks the new application of PIMs in chiral-selective transmembrane transport, offering significant potential for advancing chiral membrane separation technologies in pharmaceutical production and biomedical diagnostics.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100162"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144549781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced MembranesPub Date : 2025-01-01DOI: 10.1016/j.advmem.2025.100137
Shihang Wei , Anqi Fu , Huaying Li , Wenyi Dong , Feiyun Sun , Hongjie Wang , Ding Yu Xing , Yuexing Wang
{"title":"Accurate separation and recovery of humic substances from landfill leachate concentrate by triethanolamine-based loose nanofiltration membranes","authors":"Shihang Wei , Anqi Fu , Huaying Li , Wenyi Dong , Feiyun Sun , Hongjie Wang , Ding Yu Xing , Yuexing Wang","doi":"10.1016/j.advmem.2025.100137","DOIUrl":"10.1016/j.advmem.2025.100137","url":null,"abstract":"<div><div>The treatment of landfill leachate concentrate poses significant environmental challenges, particularly in the separation and recovery of valuable humic substances from high salt concentrations. In this study, a novel loose nanofiltration (LNF) membrane was fabricated using 0.5 wt% triethanolamine (TEOA) and 0.1 wt% trimesoyl chloride (TMC) via interfacial polymerization for the accurate separation of humic substances from inorganic salts in landfill leachate concentrate. The optimized TEOA membrane exhibited high permeate flux about 67.6 L m<sup>−2</sup> h<sup>−1</sup>·bar<sup>−1</sup> and over 90 % transmission for ions, while achieving the rejection of humic substances above 92 %. The effects of operating conditions were investigated. Results showed that increasing inorganic salt concentration led to a notable decrease in inorganic salt rejection due to intensified concentration polarization and weakened electrostatic interactions. Rising humic substance concentration further intensified membrane fouling and concentration polarization, resulting in reduced flux and increased humic substance and inorganic salt rejections. Higher temperatures and alkaline pH increased flux and maintained stable rejections. In addition, a two-stage membrane filtration process was subsequently applied to actual landfill leachate concentrate samples. The humic substance concentration was enriched from 1.5 to 37.4 g L<sup>−1</sup>, achieving a recovery rate over 60 % at a concentration factor of 12.5. The recovered humic substances complied with the standards of water-soluble fertilizers containing humic-acids (NY1106-2010), highlighting the LNF membrane's potential in sustainable landfill leachate concentrate management and resource recovery.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100137"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143593665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}