超薄矿物夹层通过多重非共价键和配位键调控聚酰胺纳滤膜的界面聚合,实现分子的快速分离

IF 9.5
Yan Zhu, Danwei Huang, Hongbo Xie, Zheyuan Liu, Fei-Fei Chen, Yan Yu
{"title":"超薄矿物夹层通过多重非共价键和配位键调控聚酰胺纳滤膜的界面聚合,实现分子的快速分离","authors":"Yan Zhu,&nbsp;Danwei Huang,&nbsp;Hongbo Xie,&nbsp;Zheyuan Liu,&nbsp;Fei-Fei Chen,&nbsp;Yan Yu","doi":"10.1016/j.advmem.2025.100163","DOIUrl":null,"url":null,"abstract":"<div><div>Polyamide (PA) nanofiltration membranes have raised considerable interest in the realm of water purification. However, balancing permeability and rejection remains a critical challenge in membrane science and technology. Herein, we report that weak non-covalent hydrogen bonds and strong coordination bonds between ultrathin calcium silicate (UCS) interlayers and piperazine (PIP) powerfully control its diffusion. Theoretical calculations reveal that coordination bonds dominate PIP binding on UCS with an adsorption energy of −443.83 ​kJ ​mol<sup>−1</sup>, thereby impeding its movement. The diffusion coefficient of PIP diminishes by 14 ​% upon the incorporation of UCS, as evidenced by molecular dynamics simulations. As a consequence, a superhydrophilic, smooth, loose, and ultrathin (∼18.9 ​nm) PA separation layer is created. The as-obtained UCS-interlayered PA possesses a remarkable water permeance of 31.7 ​L ​m<sup>−2</sup> ​h<sup>−1</sup> ​bar<sup>−1</sup> that is 2.2-fold higher than that of UCS-free PA, while dye rejection rates keep a high level. Furthermore, the UCS-interlayered PA demonstrates exceptional antifouling performance with a 95 ​% flux recovery ratio and long-term stability during 16-h filtration. The study highlights the pivotal role of mineral interlayers in tailoring amine monomer diffusion via multiple interfacial interactions for advanced water treatment applications.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100163"},"PeriodicalIF":9.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrathin mineral interlayers regulate interfacial polymerization of polyamide nanofiltration membranes via multiple non-covalent and coordination bonding for rapid molecular separation\",\"authors\":\"Yan Zhu,&nbsp;Danwei Huang,&nbsp;Hongbo Xie,&nbsp;Zheyuan Liu,&nbsp;Fei-Fei Chen,&nbsp;Yan Yu\",\"doi\":\"10.1016/j.advmem.2025.100163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polyamide (PA) nanofiltration membranes have raised considerable interest in the realm of water purification. However, balancing permeability and rejection remains a critical challenge in membrane science and technology. Herein, we report that weak non-covalent hydrogen bonds and strong coordination bonds between ultrathin calcium silicate (UCS) interlayers and piperazine (PIP) powerfully control its diffusion. Theoretical calculations reveal that coordination bonds dominate PIP binding on UCS with an adsorption energy of −443.83 ​kJ ​mol<sup>−1</sup>, thereby impeding its movement. The diffusion coefficient of PIP diminishes by 14 ​% upon the incorporation of UCS, as evidenced by molecular dynamics simulations. As a consequence, a superhydrophilic, smooth, loose, and ultrathin (∼18.9 ​nm) PA separation layer is created. The as-obtained UCS-interlayered PA possesses a remarkable water permeance of 31.7 ​L ​m<sup>−2</sup> ​h<sup>−1</sup> ​bar<sup>−1</sup> that is 2.2-fold higher than that of UCS-free PA, while dye rejection rates keep a high level. Furthermore, the UCS-interlayered PA demonstrates exceptional antifouling performance with a 95 ​% flux recovery ratio and long-term stability during 16-h filtration. The study highlights the pivotal role of mineral interlayers in tailoring amine monomer diffusion via multiple interfacial interactions for advanced water treatment applications.</div></div>\",\"PeriodicalId\":100033,\"journal\":{\"name\":\"Advanced Membranes\",\"volume\":\"5 \",\"pages\":\"Article 100163\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Membranes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772823425000375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚酰胺(PA)纳滤膜在水净化领域引起了相当大的兴趣。然而,如何平衡膜的渗透性和排斥性仍然是膜科学和技术的关键挑战。本文报道了超薄硅酸钙(UCS)中间层与哌嗪(PIP)之间的弱非共价氢键和强配位键强有力地控制了其扩散。理论计算表明,配位键主导了PIP在UCS上的结合,其吸附能为- 443.83 kJ mol−1,从而阻碍了其运动。分子动力学模拟表明,加入UCS后,PIP的扩散系数降低了14%。因此,产生了超亲水、光滑、松散和超薄(~ 18.9 nm)的PA分离层。得到的ucs层间聚酰胺的透水性为31.7 L m−2 h−1 bar−1,是无ucs聚酰胺的2.2倍,同时染料的去除率保持在较高水平。此外,ucs -层间PA具有优异的防污性能,其通量回收率为95%,在过滤16小时内具有长期稳定性。该研究强调了矿物中间层通过多种界面相互作用在高级水处理应用中裁剪胺单体扩散的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrathin mineral interlayers regulate interfacial polymerization of polyamide nanofiltration membranes via multiple non-covalent and coordination bonding for rapid molecular separation

Ultrathin mineral interlayers regulate interfacial polymerization of polyamide nanofiltration membranes via multiple non-covalent and coordination bonding for rapid molecular separation
Polyamide (PA) nanofiltration membranes have raised considerable interest in the realm of water purification. However, balancing permeability and rejection remains a critical challenge in membrane science and technology. Herein, we report that weak non-covalent hydrogen bonds and strong coordination bonds between ultrathin calcium silicate (UCS) interlayers and piperazine (PIP) powerfully control its diffusion. Theoretical calculations reveal that coordination bonds dominate PIP binding on UCS with an adsorption energy of −443.83 ​kJ ​mol−1, thereby impeding its movement. The diffusion coefficient of PIP diminishes by 14 ​% upon the incorporation of UCS, as evidenced by molecular dynamics simulations. As a consequence, a superhydrophilic, smooth, loose, and ultrathin (∼18.9 ​nm) PA separation layer is created. The as-obtained UCS-interlayered PA possesses a remarkable water permeance of 31.7 ​L ​m−2 ​h−1 ​bar−1 that is 2.2-fold higher than that of UCS-free PA, while dye rejection rates keep a high level. Furthermore, the UCS-interlayered PA demonstrates exceptional antifouling performance with a 95 ​% flux recovery ratio and long-term stability during 16-h filtration. The study highlights the pivotal role of mineral interlayers in tailoring amine monomer diffusion via multiple interfacial interactions for advanced water treatment applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信