Rejuvenation of reverse osmosis polyamide membranes degraded by chlorine in the presence of ferric chloride

Muhammad Inam Bari, Bende Merve Kayhan, Bengü Bozkaya, Aykut Argönül
{"title":"Rejuvenation of reverse osmosis polyamide membranes degraded by chlorine in the presence of ferric chloride","authors":"Muhammad Inam Bari,&nbsp;Bende Merve Kayhan,&nbsp;Bengü Bozkaya,&nbsp;Aykut Argönül","doi":"10.1016/j.advmem.2025.100141","DOIUrl":null,"url":null,"abstract":"<div><div>Reverse osmosis (RO) polyamide membranes are widely used for water treatment applications. However, certain processes such as wastewater reuse require regular membrane cleaning and disinfection with oxidants, which can lead to early membrane degradation. Furthermore, some metal ions present in the water can act as a catalyst for further accelerating the degradation. This early degradation of RO membranes poses significant challenges, resulting in operational inefficiencies, early disposal of membranes, and elevated operational costs. Fortunately, there is the possibility of recovering some part of this performance loss by means of chemical treatment through rejuvenating agents. This study aims to investigate the effectiveness of a commercially available rejuvenating agent containing tannic acid for restoring salt rejection and permeability parameters on degraded thin-film polyamide membranes. The membranes were first degraded using 250 ​ppm sodium hypochlorite (NaOCl) and 0.05 ​ppm ferric chloride (FeCl<sub>3</sub>) at various pH levels (pH ​= ​4, 7 and 9). After applying the rejuvenation treatment to the degraded membranes, the efficiency of the rejuvenating agent was determined based on the improvement achieved for performance testing with respect to salt rejection and permeability. Analytical characterization of the membranes was carried out with Fourier Transform Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR). It was found that the chlorine degradation of membranes was accelerated in the presence of FeCl<sub>3</sub> at all studied pH levels but more prominently in the acidic region. This acceleration effect was attributed to the formation of (<span><math><mrow><mo>·</mo><mtext>OH</mtext></mrow></math></span>, <span><math><mrow><mo>·</mo><mtext>OCl</mtext></mrow></math></span>) radicals. Under the conditions studied in this work, rejuvenating agent treatment effectively enhanced the salt rejection capability of the degraded membranes but was unable to restore the permeate flux.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100141"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reverse osmosis (RO) polyamide membranes are widely used for water treatment applications. However, certain processes such as wastewater reuse require regular membrane cleaning and disinfection with oxidants, which can lead to early membrane degradation. Furthermore, some metal ions present in the water can act as a catalyst for further accelerating the degradation. This early degradation of RO membranes poses significant challenges, resulting in operational inefficiencies, early disposal of membranes, and elevated operational costs. Fortunately, there is the possibility of recovering some part of this performance loss by means of chemical treatment through rejuvenating agents. This study aims to investigate the effectiveness of a commercially available rejuvenating agent containing tannic acid for restoring salt rejection and permeability parameters on degraded thin-film polyamide membranes. The membranes were first degraded using 250 ​ppm sodium hypochlorite (NaOCl) and 0.05 ​ppm ferric chloride (FeCl3) at various pH levels (pH ​= ​4, 7 and 9). After applying the rejuvenation treatment to the degraded membranes, the efficiency of the rejuvenating agent was determined based on the improvement achieved for performance testing with respect to salt rejection and permeability. Analytical characterization of the membranes was carried out with Fourier Transform Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR). It was found that the chlorine degradation of membranes was accelerated in the presence of FeCl3 at all studied pH levels but more prominently in the acidic region. This acceleration effect was attributed to the formation of (·OH, ·OCl) radicals. Under the conditions studied in this work, rejuvenating agent treatment effectively enhanced the salt rejection capability of the degraded membranes but was unable to restore the permeate flux.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信