Wanshuang Zhou , Cong Yu , Qiang Chen , Shi-Peng Sun , Xinbo Wang
{"title":"Chiral membrane with intrinsic microporosity for enantioselective electrochemical recognition of tryptophan enantiomers","authors":"Wanshuang Zhou , Cong Yu , Qiang Chen , Shi-Peng Sun , Xinbo Wang","doi":"10.1016/j.advmem.2025.100162","DOIUrl":null,"url":null,"abstract":"<div><div>Enantioselective recognition and separation of chiral molecules are pivotal in biomedical and pharmaceutical fields due to their distinct biological activities. Drawing inspiration from biological transmembrane systems, we developed a chiral-selective nanofluidic platform by embedding BINOL-derived stereogenic centers into polymers of intrinsic microporosity (PIMs). The resulting (R)-HBIN-Is membrane mimics the stereoselective capabilities of biological transporters, demonstrating a selectivity coefficient of 2.5 for D-tryptophan over L-tryptophan via electrochemical discrimination. This study marks the new application of PIMs in chiral-selective transmembrane transport, offering significant potential for advancing chiral membrane separation technologies in pharmaceutical production and biomedical diagnostics.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100162"},"PeriodicalIF":9.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Enantioselective recognition and separation of chiral molecules are pivotal in biomedical and pharmaceutical fields due to their distinct biological activities. Drawing inspiration from biological transmembrane systems, we developed a chiral-selective nanofluidic platform by embedding BINOL-derived stereogenic centers into polymers of intrinsic microporosity (PIMs). The resulting (R)-HBIN-Is membrane mimics the stereoselective capabilities of biological transporters, demonstrating a selectivity coefficient of 2.5 for D-tryptophan over L-tryptophan via electrochemical discrimination. This study marks the new application of PIMs in chiral-selective transmembrane transport, offering significant potential for advancing chiral membrane separation technologies in pharmaceutical production and biomedical diagnostics.