Restricting ionic liquid in a network comprising of GO/CNT as a separation membrane for efficient CO2 capture

IF 9.5
Dinesh K. Behera , Fan Wang , Bratin Sengupta , Qiaobei Dong , Weiwei Xu , Shiguang Li , Miao Yu
{"title":"Restricting ionic liquid in a network comprising of GO/CNT as a separation membrane for efficient CO2 capture","authors":"Dinesh K. Behera ,&nbsp;Fan Wang ,&nbsp;Bratin Sengupta ,&nbsp;Qiaobei Dong ,&nbsp;Weiwei Xu ,&nbsp;Shiguang Li ,&nbsp;Miao Yu","doi":"10.1016/j.advmem.2025.100158","DOIUrl":null,"url":null,"abstract":"<div><div>The release of carbon dioxide (CO<sub>2</sub>) to the atmosphere remains a critical challenge in addressing climate change, with emissions from power plants being a primary contributor. Membrane-based separation processes offer cost-effective, robust, and energy efficient alternatives to CO<sub>2</sub> capture from power plants. Ionic liquids (IL), known for their high CO<sub>2</sub> affinity, low vapor pressure, and high thermal stability, are propitious materials for such separations. In this study, we try to address major challenges currently restricting IL-based membranes including the porous structure for loading IL and the loading procedure onto the porous structure. An ultrathin (∼230 ​nm) 2–dimensional composite network comprising of graphene oxide (GO) sheets intercalated carbon nanotubes (CNT) spatially confining IL targeting high CO<sub>2</sub> permeance was designed and fabricated. An IL, 1-ethyl-3 methylimidazolium tetrafluoroborate ([EMIM][BF<sub>4</sub>] was used as the active separating medium. This GO/CNT hybrid network not only stabilizes the IL within the nanochannels because of interactions between cations of IL and negatively charged functional groups on GO (carboxyl, hydroxyl and carboxy groups) but also facilitates faster transport (increased nanochannels because of CNT incorporation) yielding a CO<sub>2</sub> permeance of ∼600 GPU (one order of magnitude higher than reported membranes employing the same ionic liquid) and a CO<sub>2</sub>/N<sub>2</sub> selectivity of 62 under humid conditions and elevated temperatures (up to 80 ​°C). Our approach provides a modified strategy of using ionic liquids in the solution form as opposed to most studies using pure form for obtaining a scalable, ultrathin, stable supported IL membrane.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100158"},"PeriodicalIF":9.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The release of carbon dioxide (CO2) to the atmosphere remains a critical challenge in addressing climate change, with emissions from power plants being a primary contributor. Membrane-based separation processes offer cost-effective, robust, and energy efficient alternatives to CO2 capture from power plants. Ionic liquids (IL), known for their high CO2 affinity, low vapor pressure, and high thermal stability, are propitious materials for such separations. In this study, we try to address major challenges currently restricting IL-based membranes including the porous structure for loading IL and the loading procedure onto the porous structure. An ultrathin (∼230 ​nm) 2–dimensional composite network comprising of graphene oxide (GO) sheets intercalated carbon nanotubes (CNT) spatially confining IL targeting high CO2 permeance was designed and fabricated. An IL, 1-ethyl-3 methylimidazolium tetrafluoroborate ([EMIM][BF4] was used as the active separating medium. This GO/CNT hybrid network not only stabilizes the IL within the nanochannels because of interactions between cations of IL and negatively charged functional groups on GO (carboxyl, hydroxyl and carboxy groups) but also facilitates faster transport (increased nanochannels because of CNT incorporation) yielding a CO2 permeance of ∼600 GPU (one order of magnitude higher than reported membranes employing the same ionic liquid) and a CO2/N2 selectivity of 62 under humid conditions and elevated temperatures (up to 80 ​°C). Our approach provides a modified strategy of using ionic liquids in the solution form as opposed to most studies using pure form for obtaining a scalable, ultrathin, stable supported IL membrane.

Abstract Image

限制离子液体在由氧化石墨烯/碳纳米管组成的网络中作为有效捕获二氧化碳的分离膜
向大气中排放二氧化碳(CO2)仍然是应对气候变化的一个关键挑战,而发电厂的排放是主要原因。基于膜的分离工艺为发电厂的二氧化碳捕获提供了经济、可靠和节能的替代方案。离子液体(IL)以其高CO2亲和力,低蒸汽压和高热稳定性而闻名,是这种分离的有利材料。在本研究中,我们试图解决目前限制IL基膜的主要挑战,包括用于加载IL的多孔结构和在多孔结构上加载IL的程序。设计并制备了一种由氧化石墨烯(GO)片嵌入碳纳米管(CNT)组成的超薄(~ 230 nm)二维复合网络,该网络在空间上限制了靶向高CO2渗透的IL。以IL, 1-乙基-3甲基咪唑四氟硼酸盐([EMIM][BF4])为活性分离介质。这种氧化石墨烯/碳纳米管混合网络不仅稳定了纳米通道内的IL,因为IL的阳离子与氧化石墨烯上带负电荷的官能团(羧基)、羟基和羧基),但也促进了更快的运输(由于碳纳米管的加入而增加了纳米通道),在潮湿条件和高温(高达80°C)下,二氧化碳的渗透率为~ 600 GPU(比使用相同离子液体的报道膜高一个数量级),CO2/N2选择性为62。我们的方法提供了一种改进的策略,即使用溶液形式的离子液体,而不是大多数使用纯形式的研究,以获得可扩展的、超薄的、稳定的支撑IL膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信