ieeexplore最新文献

筛选
英文 中文
Special Issue on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS 2023) in the IEEE Transactions on Device and Materials Reliability
IF 2.5 3区 工程技术
IEEE Transactions on Device and Materials Reliability Pub Date : 2025-03-19 DOI: 10.1109/TDMR.2025.3544351
Luca Cassano;Mihalis Psarakis
{"title":"Special Issue on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS 2023) in the IEEE Transactions on Device and Materials Reliability","authors":"Luca Cassano;Mihalis Psarakis","doi":"10.1109/TDMR.2025.3544351","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3544351","url":null,"abstract":"The ten articles in this special issue present innovative research in the field of defect and fault tolerance in VLSI and nanotechnology systems and provide readers with valuable insights into the latest advances and future trends in these challenging research areas. The focus of these articles is on the reliability in the design, technology and testing of electronic devices and systems, integrated circuits, printed modules, as well as methodologies and tools used for reliability and security prediction, verification and design validation.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 1","pages":"2-3"},"PeriodicalIF":2.5,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934089","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Device and Materials Reliability Publication Information
IF 2.5 3区 工程技术
IEEE Transactions on Device and Materials Reliability Pub Date : 2025-03-19 DOI: 10.1109/TDMR.2025.3549656
{"title":"IEEE Transactions on Device and Materials Reliability Publication Information","authors":"","doi":"10.1109/TDMR.2025.3549656","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3549656","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 1","pages":"C2-C2"},"PeriodicalIF":2.5,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934086","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VCMA Gradient-Driven Skyrmion on a Trapezoidal Nanotrack for Racetrack Memory Application
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2025-03-19 DOI: 10.1109/OJNANO.2025.3550173
Bikash Sharma;Pema Rinzing Bhutia;Ravish Kumar Raj;Bibek Chettri;Brajesh Kumar Kaushik;Sonal Shreya
{"title":"VCMA Gradient-Driven Skyrmion on a Trapezoidal Nanotrack for Racetrack Memory Application","authors":"Bikash Sharma;Pema Rinzing Bhutia;Ravish Kumar Raj;Bibek Chettri;Brajesh Kumar Kaushik;Sonal Shreya","doi":"10.1109/OJNANO.2025.3550173","DOIUrl":"https://doi.org/10.1109/OJNANO.2025.3550173","url":null,"abstract":"Magnetic skyrmion has great potential as information carriers in next-generation logic, neuromorphic computing, and memory devices because of its topological stability, incredibly compact size, and low current consumption required to operate it. In this work, the computational demonstration of a skyrmion controlled by a voltage controlled magnetic anisotropy (VCMA) gradient on a trapezoidal nanotrack is studied for the application of racetrack memory. The trapezoidal nanotrack aids in guiding the skyrmion's motion under the anisotropy gradient by leveraging the edge repulsion force. By utilizing a defect, the proposed device ensures a continuous flow of binary bits ‘0’ and ‘1’ without any accumulation on the racetrack. The higher angle (<italic>θ<sub>high</sub></i>) and higher anisotropy gradient (<italic>ΔK<sub>u</sub><sub>-high</sub></i>) of the trapezoidal nanotrack accelerates the skyrmion owing to higher edge repulsion force and energy gradient force. The maximum speed of 1.27 m/s was achieved by the skyrmion, and the minimum time taken for the skyrmion to reach the detector from the nucleation point was 2.16 ns. The energy used to maintain the electric field is 4.58<italic>fJ</i> per bit operation. This presents a novel approach to manipulate skyrmions under anisotropy gradient (<italic>ΔK<sub>u</sub></i>) on the trapezoidal nanotrack, paving the way for the development of improved skyrmion racetrack memory (sk-RM).","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"44-50"},"PeriodicalIF":1.8,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934757","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of the exciting world of multifunctional oxide-based electronic devices: from material to system-level applications
IF 2.5 3区 工程技术
IEEE Transactions on Device and Materials Reliability Pub Date : 2025-03-19 DOI: 10.1109/TDMR.2025.3551112
{"title":"Exploration of the exciting world of multifunctional oxide-based electronic devices: from material to system-level applications","authors":"","doi":"10.1109/TDMR.2025.3551112","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3551112","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 1","pages":"177-178"},"PeriodicalIF":2.5,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143654925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wide Band Gap Semiconductors for Automotive Applications
IF 2.5 3区 工程技术
IEEE Transactions on Device and Materials Reliability Pub Date : 2025-03-19 DOI: 10.1109/TDMR.2025.3551111
{"title":"Wide Band Gap Semiconductors for Automotive Applications","authors":"","doi":"10.1109/TDMR.2025.3551111","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3551111","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 1","pages":"175-176"},"PeriodicalIF":2.5,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of SRAM in 3-Dimensional Stacked FET With Direct Backside Contact Beyond 1Nm Node
IF 2.1 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2025-03-18 DOI: 10.1109/TNANO.2025.3552308
Mingyu Kim;Ilho Myeong;Jaehyun Park;Sungil Park;Deukho Yeon;Daewon Ha;Hyungcheol Shin
{"title":"Development of SRAM in 3-Dimensional Stacked FET With Direct Backside Contact Beyond 1Nm Node","authors":"Mingyu Kim;Ilho Myeong;Jaehyun Park;Sungil Park;Deukho Yeon;Daewon Ha;Hyungcheol Shin","doi":"10.1109/TNANO.2025.3552308","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3552308","url":null,"abstract":"Among the various Backside Interconnections (BSI) methods, Direct Backside Contact (DBC) is essential in minimizing the area of logic standard cells and SRAM bitcells with 3-dimensional Stacked FETs (3DSFET) beyond the 1 nm node. Additionally, from an SRAM design perspective, the DBC structure offers the advantage of allowing the use of NMOS for the Pass-Gate (PG) transistor, as was done previously. In this study, we demonstrated SRAM transistors operation by adopting the highly promising 3DSFET with DBC structure. And we validated the SRAM bitcell operation through TCAD simulation by applying hardware verification of the SRAM transistor. As a result, we can propose an innovative structure that is compatible with both logic transistor performance and SRAM bitcell configuration beyond 1 nm node.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"201-204"},"PeriodicalIF":2.1,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143808878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Announcing 2024 TPS Best Paper Award
IF 1.3 4区 物理与天体物理
IEEE Transactions on Plasma Science Pub Date : 2025-03-18 DOI: 10.1109/TPS.2025.3544352
Edl Schamiloglu
{"title":"Editorial Announcing 2024 TPS Best Paper Award","authors":"Edl Schamiloglu","doi":"10.1109/TPS.2025.3544352","DOIUrl":"https://doi.org/10.1109/TPS.2025.3544352","url":null,"abstract":"","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 3","pages":"362-363"},"PeriodicalIF":1.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10931864","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Realization of Compact High-Performance EAM Based on Numerical Analysis of ITO, VO2 and Graphene on SiO2 Platform
IF 2.1 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2025-03-18 DOI: 10.1109/TNANO.2025.3552525
Himanshu R. Das;Haraprasad Mondal;Rajeev Kumar
{"title":"Realization of Compact High-Performance EAM Based on Numerical Analysis of ITO, VO2 and Graphene on SiO2 Platform","authors":"Himanshu R. Das;Haraprasad Mondal;Rajeev Kumar","doi":"10.1109/TNANO.2025.3552525","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3552525","url":null,"abstract":"Plasmonic based electro-absorption modulators (EAMs) has paved the way for high-speed photonic integrated circuits (PICs). This paper demonstrates the numerical analysis and the structural design of the EAM using various plasmonic materials, such as vanadium dioxide (VO<sub>2</sub>), indium-tin-oxide (ITO) and graphene, to modulate signals traveling through the waveguide on an SiO<sub>2</sub> platform. It also explores key performance metrics, including the extinction ratio (ER) and the figure-of-merit (FOM), which is related to the device's insertion loss (IL). By optimizing the structural parameters and utilizing the plasmonic materials, the device characteristics, especially the effective-mode-index (EMI), is modified to attain the epsilon-near-zero (ENZ) condition. The ITO-based EAM attains a high ER of 22.24 dB/μm with a FOM of 482.45, while the graphene-ITO based EAM obtains an ER of 20.31 dB/μm and a FOM of 296.06 at 1.55 μm wavelength. Both devices have an energy consumption per bit (E<sub>bit</sub>) below 2.20 fJ/bit and modulation frequency (<inline-formula><tex-math>$f$</tex-math></inline-formula>) exceeding 1300 GHz at an IL <inline-formula><tex-math>$&lt; $</tex-math></inline-formula> 0.07 dB/μm. The investigated EAMs hold potential for future-generation PICs.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"178-188"},"PeriodicalIF":2.1,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143792868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multi-Mode Configurable Physical Unclonable Function Based on RRAM With Adjustable Programmable Voltage
IF 2.1 4区 工程技术
IEEE Transactions on Nanotechnology Pub Date : 2025-03-18 DOI: 10.1109/TNANO.2025.3552433
Yijun Cui;Jiang Li;Chongyan Gu;Chenghua Wang;Weiqiang Liu
{"title":"A Multi-Mode Configurable Physical Unclonable Function Based on RRAM With Adjustable Programmable Voltage","authors":"Yijun Cui;Jiang Li;Chongyan Gu;Chenghua Wang;Weiqiang Liu","doi":"10.1109/TNANO.2025.3552433","DOIUrl":"https://doi.org/10.1109/TNANO.2025.3552433","url":null,"abstract":"Resistive random access memory (RRAM) presents a promising solution for energy-efficient logic-in-memory (LiM) systems. This paper introduces a Multi-mode Configurable Physical Unclonable Function (MC-PUF) tailored for secure RRAM-based LiM applications, utilizing a conventional one-transistor-one-RRAM (1T1R) array. The MC-PUF operates in multiple modes by modifying the programming voltages of the RRAM, which captures the distinct variations of each RRAM under varying conditions. In weak write mode, the MC-PUF exploits the inherent variations of RRAM by setting the programming voltages to achieve a 50% switching probability, thereby randomly assigning ‘0’ or ‘1’ states. In parallel competition mode, it generates responses by selecting two parallel RRAMs, with one remaining in a high resistance state (HRS) and the other switching to a low resistance state (LRS). This configuration allows the MC-PUF to generate more challenge-response pairs (CRPs) compared to conventional designs, thus enhancing security through increased entropy. The design was validated through simulations using a compact Spice model and the UMC 55 nm CMOS library, as well as on an experimental hardware platform with commercial RRAM chips. Results from both simulations and hardware implementations indicate that the proposed MC-PUF exhibits high reliability, excellent uniqueness, and superior configurability.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"166-177"},"PeriodicalIF":2.1,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143769549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Announcing the Twentieth Special Issue of IEEE Transactions on Plasma Science on High-Power Microwave Generation, June 2026 宣布将于 2026 年 6 月出版《IEEE 等离子体科学杂志》关于高功率微波发生的第二十期特刊
IF 1.3 4区 物理与天体物理
IEEE Transactions on Plasma Science Pub Date : 2025-03-18 DOI: 10.1109/TPS.2025.3547679
{"title":"Announcing the Twentieth Special Issue of IEEE Transactions on Plasma Science on High-Power Microwave Generation, June 2026","authors":"","doi":"10.1109/TPS.2025.3547679","DOIUrl":"https://doi.org/10.1109/TPS.2025.3547679","url":null,"abstract":"","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 3","pages":"476-476"},"PeriodicalIF":1.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10932649","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信