椭圆电极环模式负电晕放电的仿真研究

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Binxian Lu;Lin Xiong;Zijian Yang;Ziang Liu;Jingjing Liang
{"title":"椭圆电极环模式负电晕放电的仿真研究","authors":"Binxian Lu;Lin Xiong;Zijian Yang;Ziang Liu;Jingjing Liang","doi":"10.1109/TPS.2025.3609963","DOIUrl":null,"url":null,"abstract":"The corona discharge phenomenon has been of great interest, and it is widely used in practical applications. By coupling the fluid dynamics equations and the Poisson equation, the negative corona discharge between <italic>a</i> plane and an ellipsoidal electrode is modeled in this article. The mechanism of ring mode discharge is, for the first time, systematically investigated through numerical simulation. The relationship between the mode of first discharge and electrode-plane setup conditions, such as various cathode shapes, applied voltages, and gap distances, is analyzed. The position where ring mode discharge occurs is correlated with the maximal electric field intensity during the discharge, which is generated by a combination of boundary charge and volume charge in the domain. It is found that in some cases, the discharge pulses can all be in ring mode. The first discharge tends to be in ring mode when the absolute value of applied voltage is lower, the semiaxis ratio <inline-formula> <tex-math>$a/b$ </tex-math></inline-formula> is larger, or the gap distance is longer. This study provides important insights for optimizing the design of electrodes and improving the efficiency of discharge in applications such as electrostatic precipitators, plasma devices, aero-engines, and other devices utilizing corona discharge.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 10","pages":"3113-3120"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation Study on Ellipsoidal Electrode Negative Corona Discharge in Ring Mode\",\"authors\":\"Binxian Lu;Lin Xiong;Zijian Yang;Ziang Liu;Jingjing Liang\",\"doi\":\"10.1109/TPS.2025.3609963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The corona discharge phenomenon has been of great interest, and it is widely used in practical applications. By coupling the fluid dynamics equations and the Poisson equation, the negative corona discharge between <italic>a</i> plane and an ellipsoidal electrode is modeled in this article. The mechanism of ring mode discharge is, for the first time, systematically investigated through numerical simulation. The relationship between the mode of first discharge and electrode-plane setup conditions, such as various cathode shapes, applied voltages, and gap distances, is analyzed. The position where ring mode discharge occurs is correlated with the maximal electric field intensity during the discharge, which is generated by a combination of boundary charge and volume charge in the domain. It is found that in some cases, the discharge pulses can all be in ring mode. The first discharge tends to be in ring mode when the absolute value of applied voltage is lower, the semiaxis ratio <inline-formula> <tex-math>$a/b$ </tex-math></inline-formula> is larger, or the gap distance is longer. This study provides important insights for optimizing the design of electrodes and improving the efficiency of discharge in applications such as electrostatic precipitators, plasma devices, aero-engines, and other devices utilizing corona discharge.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"53 10\",\"pages\":\"3113-3120\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11176812/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/11176812/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

电晕放电现象引起了人们极大的兴趣,并在实际应用中得到了广泛的应用。结合流体力学方程和泊松方程,建立了平面与椭球电极负电晕放电的数学模型。本文首次通过数值模拟系统地研究了环形放电的机理。分析了不同阴极形状、外加电压和间隙距离等电极平面设置条件与首次放电模式的关系。环形模式放电发生的位置与放电过程中的最大电场强度有关,而最大电场强度是由畴内边界电荷和体积电荷共同作用产生的。研究发现,在某些情况下,放电脉冲可以全部处于环形模式。当外加电压绝对值较低、半轴比$a/b$较大或间隙距离较长时,第一次放电倾向于环形模式。该研究为静电除尘器、等离子体装置、航空发动机和其他利用电晕放电的装置的电极优化设计和提高放电效率提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation Study on Ellipsoidal Electrode Negative Corona Discharge in Ring Mode
The corona discharge phenomenon has been of great interest, and it is widely used in practical applications. By coupling the fluid dynamics equations and the Poisson equation, the negative corona discharge between a plane and an ellipsoidal electrode is modeled in this article. The mechanism of ring mode discharge is, for the first time, systematically investigated through numerical simulation. The relationship between the mode of first discharge and electrode-plane setup conditions, such as various cathode shapes, applied voltages, and gap distances, is analyzed. The position where ring mode discharge occurs is correlated with the maximal electric field intensity during the discharge, which is generated by a combination of boundary charge and volume charge in the domain. It is found that in some cases, the discharge pulses can all be in ring mode. The first discharge tends to be in ring mode when the absolute value of applied voltage is lower, the semiaxis ratio $a/b$ is larger, or the gap distance is longer. This study provides important insights for optimizing the design of electrodes and improving the efficiency of discharge in applications such as electrostatic precipitators, plasma devices, aero-engines, and other devices utilizing corona discharge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信