等离子体物理中具有时变系数的(3 + 1)维扩展Jimbo-Miwa方程的可积性和新周期解、扭转-反扭转解和复多孤子解

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
M. J. Rahaman;S. Saha Ray
{"title":"等离子体物理中具有时变系数的(3 + 1)维扩展Jimbo-Miwa方程的可积性和新周期解、扭转-反扭转解和复多孤子解","authors":"M. J. Rahaman;S. Saha Ray","doi":"10.1109/TPS.2025.3605238","DOIUrl":null,"url":null,"abstract":"This article presents the exact solutions for the time-dependent variable coefficients of the (<inline-formula> <tex-math>$3+1$ </tex-math></inline-formula>)-dimensional extended Jimbo–Miwa (JM) equation. The considered equation is demonstrated to be completely integrable via the Painlevé analysis method. The Laurent series, derived using the Painlevé analysis method, has been truncated to yield an auto-Bäcklund transformation (ABT), and this method is employed to construct analytical solutions. Three new categories of analytical solutions are effectively generated for the considered equation via the ABT. Also, multi-soliton solutions are obtained using the simplified Hirota method for the equation under consideration. All the determined results are illustrated in 3-D graphs through various functions and parameter settings. These graphs reflect the physical significance of the equation being studied.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 10","pages":"3212-3227"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrability and New Periodic, Kink–Antikink, and Complex Multiple Soliton Solutions to the (3 + 1)-Dimensional Extended Jimbo–Miwa Equation With Time-Dependent Variable Coefficients in Plasma Physics\",\"authors\":\"M. J. Rahaman;S. Saha Ray\",\"doi\":\"10.1109/TPS.2025.3605238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the exact solutions for the time-dependent variable coefficients of the (<inline-formula> <tex-math>$3+1$ </tex-math></inline-formula>)-dimensional extended Jimbo–Miwa (JM) equation. The considered equation is demonstrated to be completely integrable via the Painlevé analysis method. The Laurent series, derived using the Painlevé analysis method, has been truncated to yield an auto-Bäcklund transformation (ABT), and this method is employed to construct analytical solutions. Three new categories of analytical solutions are effectively generated for the considered equation via the ABT. Also, multi-soliton solutions are obtained using the simplified Hirota method for the equation under consideration. All the determined results are illustrated in 3-D graphs through various functions and parameter settings. These graphs reflect the physical significance of the equation being studied.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"53 10\",\"pages\":\"3212-3227\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11176843/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/11176843/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了($3+1$)维扩展Jimbo-Miwa (JM)方程时变系数的精确解。通过painlevel分析方法证明了所考虑的方程是完全可积的。使用painlev分析方法导出的Laurent级数被截断以产生auto-Bäcklund变换(ABT),并使用该方法构造解析解。通过ABT有效地生成了三种新的解析解,并利用简化的Hirota方法得到了该方程的多孤子解。通过各种函数和参数设置,所有的测定结果都以三维图形的形式显示出来。这些图表反映了所研究方程的物理意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrability and New Periodic, Kink–Antikink, and Complex Multiple Soliton Solutions to the (3 + 1)-Dimensional Extended Jimbo–Miwa Equation With Time-Dependent Variable Coefficients in Plasma Physics
This article presents the exact solutions for the time-dependent variable coefficients of the ( $3+1$ )-dimensional extended Jimbo–Miwa (JM) equation. The considered equation is demonstrated to be completely integrable via the Painlevé analysis method. The Laurent series, derived using the Painlevé analysis method, has been truncated to yield an auto-Bäcklund transformation (ABT), and this method is employed to construct analytical solutions. Three new categories of analytical solutions are effectively generated for the considered equation via the ABT. Also, multi-soliton solutions are obtained using the simplified Hirota method for the equation under consideration. All the determined results are illustrated in 3-D graphs through various functions and parameter settings. These graphs reflect the physical significance of the equation being studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信