Cell ResearchPub Date : 2024-07-05DOI: 10.1038/s41422-024-00995-4
Lele Tao, Dongxue Wang, Qingning Yuan, Fenghui Zhao, Yu Zhang, Tianyuan Du, Shiyi Shen, H. Eric Xu, Yi Li, Dehua Yang, Jia Duan
{"title":"Bitter taste receptor TAS2R14 activation and G protein assembly by an intracellular agonist","authors":"Lele Tao, Dongxue Wang, Qingning Yuan, Fenghui Zhao, Yu Zhang, Tianyuan Du, Shiyi Shen, H. Eric Xu, Yi Li, Dehua Yang, Jia Duan","doi":"10.1038/s41422-024-00995-4","DOIUrl":"10.1038/s41422-024-00995-4","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"34 10","pages":"735-738"},"PeriodicalIF":28.1,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Localized, highly efficient secretion of signaling proteins by migrasomes","authors":"Haifeng Jiao, Xiaopeng Li, Ying Li, Yuting Guo, Xiaoyu Hu, Takami Sho, Yiqun Luo, Jinyu Wang, Huizhen Cao, Wanqing Du, Dong Li, Li Yu","doi":"10.1038/s41422-024-00992-7","DOIUrl":"10.1038/s41422-024-00992-7","url":null,"abstract":"Migrasomes, enriched with signaling molecules such as chemokines, cytokines and angiogenic factors, play a pivotal role in the spatially defined delivery of these molecules, influencing critical physiological processes including organ morphogenesis and angiogenesis. The mechanism governing the accumulation of signaling molecules in migrasomes has been elusive. In this study, we show that secretory proteins, including signaling proteins, are transported into migrasomes by secretory carriers via both the constitutive and regulated secretion pathways. During cell migration, a substantial portion of these carriers is redirected to the rear of the cell and actively transported into migrasomes, driven by the actin-dependent motor protein Myosin-5a. Once at the migrasomes, these carriers fuse with the migrasome membrane through SNARE-mediated mechanisms. Inhibiting migrasome formation significantly reduces secretion, suggesting migrasomes as a principal secretion route in migrating cells. Our findings reveal a specialized, highly localized secretion paradigm in migrating cells, conceptually paralleling the targeted neurotransmitter release observed in neuronal systems.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"34 8","pages":"572-585"},"PeriodicalIF":28.1,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41422-024-00992-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141448159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell ResearchPub Date : 2024-06-24DOI: 10.1038/s41422-024-00994-5
Huanhuan Zhu, Weiqiang Lin, Aifu Lin
{"title":"ANT2: the first mammalian mitochondrial RNA transport translocon","authors":"Huanhuan Zhu, Weiqiang Lin, Aifu Lin","doi":"10.1038/s41422-024-00994-5","DOIUrl":"10.1038/s41422-024-00994-5","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"34 8","pages":"535-536"},"PeriodicalIF":28.1,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41422-024-00994-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine","authors":"Mengqi Li, Yu Wang, Xiaoyan Wei, Wei-Feng Cai, Jianfeng Wu, Mingxia Zhu, Yongliang Wang, Yan-Hui Liu, Jinye Xiong, Qi Qu, Yan Chen, Xiao Tian, Luming Yao, Renxiang Xie, Xiaomin Li, Siwei Chen, Xi Huang, Cixiong Zhang, Changchuan Xie, Yaying Wu, Zheni Xu, Baoding Zhang, Bin Jiang, Zhi-Chao Wang, Qinxi Li, Gang Li, Shu-Yong Lin, Li Yu, Hai-Long Piao, Xianming Deng, Jiahuai Han, Chen-Song Zhang, Sheng-Cai Lin","doi":"10.1038/s41422-024-00985-6","DOIUrl":"10.1038/s41422-024-00985-6","url":null,"abstract":"The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"34 10","pages":"683-706"},"PeriodicalIF":28.1,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41422-024-00985-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell ResearchPub Date : 2024-06-10DOI: 10.1038/s41422-024-00987-4
Romane Thouenon, Grégory Verdeil
{"title":"Tumor microenvironment squeezes out the juice from T cells","authors":"Romane Thouenon, Grégory Verdeil","doi":"10.1038/s41422-024-00987-4","DOIUrl":"10.1038/s41422-024-00987-4","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"34 10","pages":"677-678"},"PeriodicalIF":28.1,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41422-024-00987-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141298916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}