Cell ResearchPub Date : 2025-03-14DOI: 10.1038/s41422-025-01094-8
Chenming Zeng, Eric A. Miska
{"title":"New insights into how parental worms protect their offspring","authors":"Chenming Zeng, Eric A. Miska","doi":"10.1038/s41422-025-01094-8","DOIUrl":"10.1038/s41422-025-01094-8","url":null,"abstract":"","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 8","pages":"545-546"},"PeriodicalIF":25.9,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143623873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell ResearchPub Date : 2025-03-07DOI: 10.1038/s41422-025-01085-9
Xiaojuan Wang, Shulin Li, Shiyin Lin, Yaping Han, Tong Zhan, Zhiying Huang, Juanjuan Wang, Ying Li, Haiteng Deng, Min Zhang, Du Feng, Liang Ge
{"title":"Oncogenic RAS induces a distinctive form of non-canonical autophagy mediated by the P38-ULK1-PI4KB axis","authors":"Xiaojuan Wang, Shulin Li, Shiyin Lin, Yaping Han, Tong Zhan, Zhiying Huang, Juanjuan Wang, Ying Li, Haiteng Deng, Min Zhang, Du Feng, Liang Ge","doi":"10.1038/s41422-025-01085-9","DOIUrl":"10.1038/s41422-025-01085-9","url":null,"abstract":"Cancer cells with RAS mutations exhibit enhanced autophagy, essential for their proliferation and survival, making it a potential target for therapeutic intervention. However, the regulatory differences between RAS-induced autophagy and physiological autophagy remain poorly understood, complicating the development of cancer-specific anti-autophagy treatments. In this study, we identified a form of non-canonical autophagy induced by oncogenic KRAS expression, termed RAS-induced non-canonical autophagy via ATG8ylation (RINCAA). RINCAA involves distinct autophagic factors compared to those in starvation-induced autophagy and incorporates non-autophagic components, resulting in the formation of non-canonical autophagosomes with multivesicular/multilaminar structures labeled by ATG8 family proteins (e.g., LC3 and GABARAP). We have designated these structures as RAS-induced multivesicular/multilaminar bodies of ATG8ylation (RIMMBA). A notable feature of RINCAA is the substitution of the class III PI3K in canonical autophagy with PI4KB in RINCAA. We identified a regulatory P38-ULK1-PI4KB-WIPI2 signaling cascade governing this process, where ULK1 triggers PI4KB phosphorylation at S256 and T263, initiating PI4P production, ATG8ylation, and non-canonical autophagy. Importantly, elevated PI4KB phosphorylation at S256 and T263 was observed in RAS-mutated cancer cells and colorectal cancer specimens. Inhibition of PI4KB S256 and T263 phosphorylation led to a reduction in RINCAA activity and tumor growth in both xenograft and KPC models of pancreatic cancer, suggesting that targeting ULK1-mediated PI4KB phosphorylation could represent a promising therapeutic strategy for RAS-mutated cancers.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 6","pages":"399-422"},"PeriodicalIF":25.9,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01085-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143569557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SETD1B-mediated broad H3K4me3 controls proper temporal patterns of gene expression critical for spermatid development","authors":"Zhen Lin, Bowen Rong, Ruitu Lyu, Yuxuan Zheng, Yao Chen, Junyi Yan, Meixia Wu, Xiaogang Gao, Fuchou Tang, Fei Lan, Ming-Han Tong","doi":"10.1038/s41422-025-01080-0","DOIUrl":"10.1038/s41422-025-01080-0","url":null,"abstract":"Epigenetic programming governs cell fate determination during development through intricately controlling sequential gene activation and repression. Although H3K4me3 is widely recognized as a hallmark of gene activation, its role in modulating transcription output and timing within a continuously developing system remains poorly understood. In this study, we provide a detailed characterization of the epigenomic landscapes in developing male germ cells. We identified thousands of spermatid-specific broad H3K4me3 domains regulated by the SETD1B-RFX2 axis, representing a previously underappreciated form of H3K4me3. These domains, overlapping with H3K27ac-marked enhancers and promoters, play critical roles in orchestrating robust transcription and accurate temporal control of gene expression. Mechanistically, these broad H3K4me3 compete effectively with regular H3K4me3 for transcriptional machinery, thereby ensuring robust levels and precise timing of master gene expression in mouse spermiogenesis. Disruption of this mechanism compromises the accuracy of transcription dosage and timing, ultimately impairing spermiogenesis. Additionally, we unveil remarkable changes in the distribution of heterochromatin marks, including H3K27me3 and H3K9me2, during the mitosis-to-meiosis transition and completion of meiotic recombination, which closely correlates with gene silencing. This work underscores the highly orchestrated epigenetic regulation in spermatogenesis, highlighting the previously unrecognized role of Setd1b in the formation of broad H3K4me3 domains and transcriptional control, and provides an invaluable resource for future studies toward the elucidation of spermatogenesis.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 5","pages":"345-361"},"PeriodicalIF":25.9,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41422-025-01080-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell ResearchPub Date : 2025-02-28DOI: 10.1038/s41422-025-01084-w
Yi Li, Paulina Fischer, Mengjiao Wang, Qianxing Zhou, Aixia Song, Rui Yuan, Wanyu Meng, Fei Xavier Chen, Reinhard Lührmann, Benjamin Lau, Ed Hurt, Jingdong Cheng
{"title":"Structural insights into spliceosome fidelity: DHX35–GPATCH1- mediated rejection of aberrant splicing substrates","authors":"Yi Li, Paulina Fischer, Mengjiao Wang, Qianxing Zhou, Aixia Song, Rui Yuan, Wanyu Meng, Fei Xavier Chen, Reinhard Lührmann, Benjamin Lau, Ed Hurt, Jingdong Cheng","doi":"10.1038/s41422-025-01084-w","DOIUrl":"10.1038/s41422-025-01084-w","url":null,"abstract":"The spliceosome, a highly dynamic macromolecular assembly, catalyzes the precise removal of introns from pre-mRNAs. Recent studies have provided comprehensive structural insights into the step-wise assembly, catalytic splicing and final disassembly of the spliceosome. However, the molecular details of how the spliceosome recognizes and rejects suboptimal splicing substrates remained unclear. Here, we show cryo-electron microscopy structures of spliceosomal quality control complexes from a thermophilic eukaryote, Chaetomium thermophilum. The spliceosomes, henceforth termed B*Q, are stalled at a catalytically activated state but prior to the first splicing reaction due to an aberrant 5’ splice site conformation. This state is recognized by G-patch protein GPATCH1, which is docked onto PRP8-EN and -RH domains and has recruited the cognate DHX35 helicase to its U2 snRNA substrate. In B*Q, DHX35 has dissociated the U2/branch site helix, while the disassembly helicase DHX15 is docked close to its U6 RNA 3’-end substrate. Our work thus provides mechanistic insights into the concerted action of two spliceosomal helicases in maintaining splicing fidelity by priming spliceosomes that are bound to aberrant splice substrates for disassembly.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"35 4","pages":"296-308"},"PeriodicalIF":28.1,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41422-025-01084-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}