焦亡:分子机制及其在疾病中的作用。

IF 28.1 1区 生物学 Q1 CELL BIOLOGY
Cell Research Pub Date : 2025-05-01 Epub Date: 2025-04-03 DOI:10.1038/s41422-025-01107-6
Petr Broz
{"title":"焦亡:分子机制及其在疾病中的作用。","authors":"Petr Broz","doi":"10.1038/s41422-025-01107-6","DOIUrl":null,"url":null,"abstract":"<p><p>Pyroptosis is a type of programmed necrosis triggered by the detection of pathogens or endogenous danger signals in the cytosol. Pyroptotic cells exhibit a swollen, enlarged morphology and ultimately undergo lysis, releasing their cytosolic contents - such as proteins, metabolites, and nucleic acids - into the extracellular space. These molecules can function as danger-associated molecular patterns (DAMPs), triggering inflammation when detected by neighboring cells. Mechanistically, pyroptosis is initiated by members of the gasdermin protein family, which were identified a decade ago as pore-forming executors of cell death. Mammalian gasdermins consist of a cytotoxic N-terminal domain, a flexible linker, and a C-terminal regulatory domain that binds to and inhibits the N-terminus. Proteolytic cleavage within the linker releases the N-terminal domain, enabling it to target various cellular membranes, including nuclear, mitochondrial, and plasma membranes, where it forms large transmembrane pores. Gasdermin pores in the plasma membrane disrupt the electrochemical gradient, leading to water influx and cell swelling. Their formation also activates the membrane protein ninjurin-1 (NINJ1), which oligomerizes to drive complete plasma membrane rupture and the release of large DAMPs. Since their discovery as pore-forming proteins, gasdermins have been linked to pyroptosis not only in host defense but also in various pathological conditions. This review explores the history of pyroptosis, recent insights into gasdermin activation, the cellular consequences of pore formation, and the physiological roles of pyroptosis.</p>","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":" ","pages":"334-344"},"PeriodicalIF":28.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012027/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pyroptosis: molecular mechanisms and roles in disease.\",\"authors\":\"Petr Broz\",\"doi\":\"10.1038/s41422-025-01107-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pyroptosis is a type of programmed necrosis triggered by the detection of pathogens or endogenous danger signals in the cytosol. Pyroptotic cells exhibit a swollen, enlarged morphology and ultimately undergo lysis, releasing their cytosolic contents - such as proteins, metabolites, and nucleic acids - into the extracellular space. These molecules can function as danger-associated molecular patterns (DAMPs), triggering inflammation when detected by neighboring cells. Mechanistically, pyroptosis is initiated by members of the gasdermin protein family, which were identified a decade ago as pore-forming executors of cell death. Mammalian gasdermins consist of a cytotoxic N-terminal domain, a flexible linker, and a C-terminal regulatory domain that binds to and inhibits the N-terminus. Proteolytic cleavage within the linker releases the N-terminal domain, enabling it to target various cellular membranes, including nuclear, mitochondrial, and plasma membranes, where it forms large transmembrane pores. Gasdermin pores in the plasma membrane disrupt the electrochemical gradient, leading to water influx and cell swelling. Their formation also activates the membrane protein ninjurin-1 (NINJ1), which oligomerizes to drive complete plasma membrane rupture and the release of large DAMPs. Since their discovery as pore-forming proteins, gasdermins have been linked to pyroptosis not only in host defense but also in various pathological conditions. This review explores the history of pyroptosis, recent insights into gasdermin activation, the cellular consequences of pore formation, and the physiological roles of pyroptosis.</p>\",\"PeriodicalId\":9926,\"journal\":{\"name\":\"Cell Research\",\"volume\":\" \",\"pages\":\"334-344\"},\"PeriodicalIF\":28.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012027/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41422-025-01107-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41422-025-01107-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

焦亡是一种程序性坏死,由细胞质中检测到病原体或内源性危险信号引起。热噬细胞表现出肿胀、扩大的形态,最终发生裂解,将其胞质内容物(如蛋白质、代谢物和核酸)释放到细胞外空间。这些分子可以作为危险相关分子模式(DAMPs)发挥作用,当邻近细胞检测到时触发炎症。从机制上讲,热亡是由气皮蛋白家族的成员发起的,这些成员在十年前被确定为细胞死亡的成孔执行者。哺乳动物gasdermins由细胞毒性n端结构域、柔性连接体和结合并抑制n端的c端调控结构域组成。连接体内的蛋白水解裂解释放n端结构域,使其能够靶向各种细胞膜,包括核膜、线粒体和质膜,在那里形成大的跨膜孔。质膜上的气凝胶孔隙破坏了电化学梯度,导致水内流和细胞膨胀。它们的形成还激活膜蛋白忍素-1 (ninjurin-1, NINJ1),忍素-1寡聚驱动质膜完全破裂并释放大量DAMPs。自从它们作为成孔蛋白被发现以来,gasdermins不仅在宿主防御中与热亡有关,而且在各种病理条件下也与热亡有关。这篇综述探讨了焦亡的历史,最近对气真皮蛋白激活的见解,孔形成的细胞后果,以及焦亡的生理作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pyroptosis: molecular mechanisms and roles in disease.

Pyroptosis is a type of programmed necrosis triggered by the detection of pathogens or endogenous danger signals in the cytosol. Pyroptotic cells exhibit a swollen, enlarged morphology and ultimately undergo lysis, releasing their cytosolic contents - such as proteins, metabolites, and nucleic acids - into the extracellular space. These molecules can function as danger-associated molecular patterns (DAMPs), triggering inflammation when detected by neighboring cells. Mechanistically, pyroptosis is initiated by members of the gasdermin protein family, which were identified a decade ago as pore-forming executors of cell death. Mammalian gasdermins consist of a cytotoxic N-terminal domain, a flexible linker, and a C-terminal regulatory domain that binds to and inhibits the N-terminus. Proteolytic cleavage within the linker releases the N-terminal domain, enabling it to target various cellular membranes, including nuclear, mitochondrial, and plasma membranes, where it forms large transmembrane pores. Gasdermin pores in the plasma membrane disrupt the electrochemical gradient, leading to water influx and cell swelling. Their formation also activates the membrane protein ninjurin-1 (NINJ1), which oligomerizes to drive complete plasma membrane rupture and the release of large DAMPs. Since their discovery as pore-forming proteins, gasdermins have been linked to pyroptosis not only in host defense but also in various pathological conditions. This review explores the history of pyroptosis, recent insights into gasdermin activation, the cellular consequences of pore formation, and the physiological roles of pyroptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Research
Cell Research 生物-细胞生物学
CiteScore
53.90
自引率
0.70%
发文量
2420
审稿时长
2.3 months
期刊介绍: Cell Research (CR) is an international journal published by Springer Nature in partnership with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). It focuses on publishing original research articles and reviews in various areas of life sciences, particularly those related to molecular and cell biology. The journal covers a broad range of topics including cell growth, differentiation, and apoptosis; signal transduction; stem cell biology and development; chromatin, epigenetics, and transcription; RNA biology; structural and molecular biology; cancer biology and metabolism; immunity and molecular pathogenesis; molecular and cellular neuroscience; plant molecular and cell biology; and omics, system biology, and synthetic biology. CR is recognized as China's best international journal in life sciences and is part of Springer Nature's prestigious family of Molecular Cell Biology journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信