Cell Biology International最新文献

筛选
英文 中文
PLEK2 activates the PI3K/AKT signaling pathway to drive lung adenocarcinoma progression by upregulating SPC25 PLEK2 通过上调 SPC25 激活 PI3K/AKT 信号通路,从而推动肺腺癌的进展。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-06-18 DOI: 10.1002/cbin.12197
Wenqian Zhang, Lei Yu, Cong Xu, Tian Tang, Jianguang Cao, Lei Chen, Xinya Pang, Weihao Ren
{"title":"PLEK2 activates the PI3K/AKT signaling pathway to drive lung adenocarcinoma progression by upregulating SPC25","authors":"Wenqian Zhang,&nbsp;Lei Yu,&nbsp;Cong Xu,&nbsp;Tian Tang,&nbsp;Jianguang Cao,&nbsp;Lei Chen,&nbsp;Xinya Pang,&nbsp;Weihao Ren","doi":"10.1002/cbin.12197","DOIUrl":"10.1002/cbin.12197","url":null,"abstract":"<p>Lung adenocarcinoma (LUAD) is the most common subtype of NSCLC, characterized by poor prognosis and frequently diagnosed at advanced. While previous studies have demonstrated pleckstrin-2 (PLEK2) as aberrantly expressed and implicated in tumorigenesis across various tumor types, including LUAD, the molecular mechanisms underlying PLEK2-mediated LUAD progression remain incompletely understood. In this study, we obtained data from The Cancer Genome Atlas (TCGA) database to assess PLEK2 expression in LUAD, a finding further confirmed through analysis of human tissue specimens. PLEK2-silenced LUAD cellular models were subsequently constructed to examine the functional role of PLEK2 both in vitro and in vivo. Our results showed elevated PLEK2 expression in LUAD, correlating with poor patients' prognosis. PLEK2 knockdown led to a significant suppression of LUAD cell proliferation and migration, accompanied by enhanced apoptosis. Moreover, tumor growth in mice injected with PLEK2-silencing LUAD cells was impaired. Gene expression profiling and Co-IP assays suggested direct interaction between PLEK2 and SPC25, with downregulation of SPC25 similarly impairing cell proliferation and migration. Additionally, we revealed phosphoinositide 3-kinase (PI3K)/AKT signaling activation as requisite for PLEK2-induced malignant phenotypes in LUAD. Collectively, our findings underscore PLEK2's oncogenic potential in LUAD, suggesting its utility as a prognostic indicator and therapeutic target for LUAD management.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 9","pages":"1285-1300"},"PeriodicalIF":3.3,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbin.12197","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative characterisation of an ecto-5′-nucleotidase (CD73) in non-tumoral MCF10-A breast cells and triple-negative MDA-MB-231 breast cancer cells 非肿瘤性 MCF10-A 乳腺癌细胞和三阴性 MDA-MB-231 乳腺癌细胞中外位-5'-核苷酸酶(CD73)的比较特性。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-06-18 DOI: 10.1002/cbin.12202
Thais Cristino Rocha-Vieira, Marco Antonio Lacerda-Abreu, Luiz Fernando Carvalho-Kelly, Samara Santos-Araújo, Katia C. Gondim, José Roberto Meyer-Fernandes
{"title":"Comparative characterisation of an ecto-5′-nucleotidase (CD73) in non-tumoral MCF10-A breast cells and triple-negative MDA-MB-231 breast cancer cells","authors":"Thais Cristino Rocha-Vieira,&nbsp;Marco Antonio Lacerda-Abreu,&nbsp;Luiz Fernando Carvalho-Kelly,&nbsp;Samara Santos-Araújo,&nbsp;Katia C. Gondim,&nbsp;José Roberto Meyer-Fernandes","doi":"10.1002/cbin.12202","DOIUrl":"10.1002/cbin.12202","url":null,"abstract":"<p>Ecto-5′-nucleotidase (CD73) hydrolyses 5′AMP to adenosine and inorganic phosphate. Breast cancer cells (MDA-MB-231) express high CD73 levels, and this enzyme has been found to play a tumour-promoting role in breast cancer. However, no studies have sought to investigate whether CD73 has differential affinity or substrate preferences between noncancerous and cancerous breast cells. In the present study, we aimed to biochemically characterise ecto-5′-nucleotidase in breast cancer cell lines and assess whether its catalytic function and tumour progression are correlated in breast cancer cells. The results showed that compared to nontumoral breast MCF-10A cells, triple-negative breast cancer MDA-MB-231 cells had a higher ecto-5′-nucleotidase expression level and enzymatic activity. Although ecto-5′-nucleotidase activity in the MDA-MB-231 cell line showed no selectivity among monophosphorylated substrates, 5′AMP was preferred by the MCF-10A cell line. Compared to the MCF-10A cell line, the MDA-MB-231 cell line has better hydrolytic ability, lower substrate affinity, and high inhibitory potential after treatment with a specific CD73 inhibitor α,β‑methylene ADP (APCP). Therefore, we demonstrated that a specific inhibitor of the ecto-5-nucleotidase significantly reduced the migratory and invasive capacity of MDA-MB-231 cells, suggesting that ecto-5-nucleotidase activity might play an important role in metastatic progression.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 9","pages":"1354-1363"},"PeriodicalIF":3.3,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amitriptyline and cholecalciferol amend hippocampal histological structure and myelination during stress in Wistar rats via regulating miR200/BMP4/Olig-2 signaling 阿米替林和胆钙化醇通过调节miR200/BMP4/Olig-2信号转导改善Wistar大鼠应激时的海马组织学结构和髓鞘化。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-06-18 DOI: 10.1002/cbin.12200
Marian Maher Salib Roushdy, Jolly M. W. Labib, Dina Sayed Abdelrahim, Dalia Abdel Wahab Mohamed, Marian Farid Louka Abdelmalak
{"title":"Amitriptyline and cholecalciferol amend hippocampal histological structure and myelination during stress in Wistar rats via regulating miR200/BMP4/Olig-2 signaling","authors":"Marian Maher Salib Roushdy,&nbsp;Jolly M. W. Labib,&nbsp;Dina Sayed Abdelrahim,&nbsp;Dalia Abdel Wahab Mohamed,&nbsp;Marian Farid Louka Abdelmalak","doi":"10.1002/cbin.12200","DOIUrl":"10.1002/cbin.12200","url":null,"abstract":"<p>Chronic stress is a universal condition commonly associated with many psychiatric diseases. An extensive body of evidence discussed hippocampal affection upon chronic stress exposure, however, the underlying molecular pathways still need to be identified. We investigated the impact of chronic stress on miR200/BMP/Olig-2 signaling and hippocampal myelination. We also compared the effects of chronic administration of amitriptyline and cholecalciferol on chronically stressed hippocampi. Both amitriptyline and cholecalciferol significantly decreased serum cortisol levels, reduced immobility time in the forced swim test, increased the number of crossed squares in open field test, decreased the hippocampal expression of bone morphogenetic protein 4 (BMP4) and its messenger RNA (mRNA) levels, reduced miR200 expression as compared to untreated chronically stressed rats. Also, both drugs amended the hippocampal neuronal damage, enhanced the surviving cell count, and increased the pyramidal layer thickness of Cornu Ammonis subregion 1 (CA1) and granule cell layer of the dentate gyrus. Cholecalciferol was more effective in increasing the area percentage of myelin basic protein (MBP) and Olig-2 positive cells count in hippocampi of chronic stress-exposed rats than amitriptyline, thus enhancing myelination. We also found a negative correlation between the expression of BMP4, its mRNA, miR200, and the immunoexpression of MBP and Olig-2 proteins. This work underscores the amelioration of the stress-induced behavioral changes, inhibition of miR200/BMP4 signaling, and enhancement of hippocampal myelination following chronic administration of either amitriptyline or cholecalciferol, though cholecalciferol seemed more effective in brain remyelination.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 9","pages":"1326-1342"},"PeriodicalIF":3.3,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GSE1 promotes the proliferation and migration of lung adenocarcinoma cells by downregulating KLF6 expression GSE1 通过下调 KLF6 的表达促进肺腺癌细胞的增殖和迁移。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-06-17 DOI: 10.1002/cbin.12208
Ziyu Meng, Yingqian Yang, Shupei Li, Liguo Huang, Zhoujuan Yao, Yixuan Chen, Junkun Wang, Yiru Shen, Pingping Liang, Hui Zhang, Wenbin Wang, Fengsong Wang
{"title":"GSE1 promotes the proliferation and migration of lung adenocarcinoma cells by downregulating KLF6 expression","authors":"Ziyu Meng,&nbsp;Yingqian Yang,&nbsp;Shupei Li,&nbsp;Liguo Huang,&nbsp;Zhoujuan Yao,&nbsp;Yixuan Chen,&nbsp;Junkun Wang,&nbsp;Yiru Shen,&nbsp;Pingping Liang,&nbsp;Hui Zhang,&nbsp;Wenbin Wang,&nbsp;Fengsong Wang","doi":"10.1002/cbin.12208","DOIUrl":"10.1002/cbin.12208","url":null,"abstract":"<p>Lung cancer is one of the most prevalent human cancers with a high lethality rate worldwide. In this study, we demonstrated that GSE1 (genetic suppressor element 1) expression is aberrantly upregulated in lung adenocarcinoma and that GSE1 depletion inhibits the proliferation and migration of both A549 and H1299 cells. Immunoprecipitation assays demonstrated that GSE1 interacts with histone deacetylase 1 (HDAC1) and other BRAF–HDAC complex (BHC) components in cells. The transcriptome of GSE1-knockdown A549 cells indicated that 207 genes were upregulated and 159 were downregulated based on a <i>p</i>-value &lt; .05 and fold change ≥ 1.5. Bioinformatics analysis suggested that 140 differentially expressed genes harbor binding sites for HDAC1, including the tumor suppressor gene <i>KLF6</i> (Kruppel-like factor 6). Indeed, quantitative reverse-transcription polymerase chain reaction and western blot analysis revealed that GSE1 could inhibit the transcription of <i>KLF6</i> in lung cancer cells. In conclusion, GSE1 cooperates with HDAC1 to promote the proliferation and metastasis of non-small cell lung cancer cells through the downregulation of <i>KLF6</i> expression.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 10","pages":"1490-1506"},"PeriodicalIF":3.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structure and function of multifunctional protein ErbB3 binding protein 1 (Ebp1) and its role in diseases 多功能蛋白 ErbB3 结合蛋白 1(Ebp1)的结构和功能及其在疾病中的作用。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-06-17 DOI: 10.1002/cbin.12196
Ying Wang, Jianxiao Xing, Yanyang Liang, Huifang Liang, Nannan Liang, Junqin Li, Guohua Yin, Xinhua Li, Kaiming Zhang
{"title":"The structure and function of multifunctional protein ErbB3 binding protein 1 (Ebp1) and its role in diseases","authors":"Ying Wang,&nbsp;Jianxiao Xing,&nbsp;Yanyang Liang,&nbsp;Huifang Liang,&nbsp;Nannan Liang,&nbsp;Junqin Li,&nbsp;Guohua Yin,&nbsp;Xinhua Li,&nbsp;Kaiming Zhang","doi":"10.1002/cbin.12196","DOIUrl":"10.1002/cbin.12196","url":null,"abstract":"<p>ErbB3-binding protein 1(Ebp1) has two isoforms, p42 Ebp1 and p48 Ebp1, both of which can regulate cell growth and differentiation. But these isoforms often have opposite effects, including contradictory roles in regulation of cell growth in different tissues and cells. P48 Ebp1 belongs to the full-length sequence, while conformational changes in the crystal structure of p42 Ebp1 reveals a lack of an α helix at the amino terminus. Due to the differences in the structures of these two isoforms, they have different binding partners and protein modifications. Ebp1 can function as both an oncogene and a tumor suppressor factor. However, the underlying mechanisms by which these two isoforms exert opposite functions are still not fully understood. In this review, we summarize the genes and the structures of protein of these two isoforms, protein modifications, binding partners and the association of different isoforms with diseases.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 8","pages":"1069-1079"},"PeriodicalIF":3.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTION: Lack of MicroRNA-155 Ameliorates Renal Fibrosis by Targeting PDE3A/TGF-β1/Smad Signaling in Mice with Obstructive Nephropathy 返回:通过靶向阻塞性肾病小鼠的 PDE3A/TGF-β1/Smad 信号,缺乏 MicroRNA-155 可改善肾脏纤维化。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-06-06 DOI: 10.1002/cbin.12194
{"title":"RETRACTION: Lack of MicroRNA-155 Ameliorates Renal Fibrosis by Targeting PDE3A/TGF-β1/Smad Signaling in Mice with Obstructive Nephropathy","authors":"","doi":"10.1002/cbin.12194","DOIUrl":"10.1002/cbin.12194","url":null,"abstract":"<p><b>RETRACTION:</b> W. Xi, X. Zhao, M. Wu, W. Jia, and H. Li, “Lack of MicroRNA-155 Ameliorates Renal Fibrosis by Targeting PDE3A/TGF-β1/Smad Signaling in Mice with Obstructive Nephropathy”, <i>Cell Biology International</i> 42, no. 11 (2018): 1523-1532. https://doi.org/10.1002/cbin.11038</p><p>The above article, published online on 6 August 2018 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor-in-Chief, Sergio Schenkman; the International Federation for Cell Biology; and John Wiley &amp; Sons Ltd.</p><p>The retraction has been agreed due to concerns raised by third parties on the data presented in the article. Several flaws and inconsistencies between results presented and experimental methods described were found. Furthermore, several image elements in Figure 2 A were found to have been published previously in a different scientific context. Thus, the editors consider the conclusions of this article to be invalid. The authors have been informed of the decision of retraction but were not available for a final confirmation.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 8","pages":"1226"},"PeriodicalIF":3.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbin.12194","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lysophosphatidylcholine induces oxidative stress and calcium-mediated cell death in human blood platelets 溶血磷脂酰胆碱诱导人体血小板氧化应激和钙介导的细胞死亡
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-06-04 DOI: 10.1002/cbin.12192
Pooja Yadav, Samir K. Beura, Abhishek R. Panigrahi, Paresh P. Kulkarni, Mithlesh K. Yadav, Anjana Munshi, Sunil K. Singh
{"title":"Lysophosphatidylcholine induces oxidative stress and calcium-mediated cell death in human blood platelets","authors":"Pooja Yadav,&nbsp;Samir K. Beura,&nbsp;Abhishek R. Panigrahi,&nbsp;Paresh P. Kulkarni,&nbsp;Mithlesh K. Yadav,&nbsp;Anjana Munshi,&nbsp;Sunil K. Singh","doi":"10.1002/cbin.12192","DOIUrl":"10.1002/cbin.12192","url":null,"abstract":"<p>Platelets are essential component of circulation that plays a major role in hemostasis and thrombosis. During activation and its demise, platelets release platelet-derived microvesicles, with lysophosphatidylcholine (LPC) being a prominent component in their lipid composition. LPC, an oxidized low-density lipoprotein, is involved in cellular metabolism, but its higher level is implicated in pathologies like atherosclerosis, diabetes, and inflammatory disorders. Despite this, its impact on platelet function remains relatively unexplored. To address this, we studied LPC's effects on washed human platelets. A multimode plate reader was employed to measure reactive oxygen species and intracellular calcium using H<sub>2</sub>DCF-DA and Fluo-4-AM, respectively. Flow cytometry was utilized to measure phosphatidylserine expression, mitochondrial membrane potential (ΔΨm), and mitochondrial permeability transition pore (mPTP) formation using FITC-Annexin V, JC-1, and CoCl<sub>2</sub>/calcein-AM, respectively. Additionally, platelet morphology and its ultrastructure were observed via phase contrast and electron microscopy. Sonoclot and light transmission aggregometry were employed to examine fibrin formation and platelet aggregation, respectively. The findings demonstrate that LPC induced oxidative stress and increased intracellular calcium in platelets, resulting in increased phosphatidylserine expression and reduced ΔΨm. LPC triggered caspase-independent platelet death and mPTP opening via cytosolic and mitochondrial calcium, along with microvesiculation and reduced platelet counts. LPC increased the platelet's size, adopting a balloon-shaped morphology, causing membrane fragmentation and releasing its cellular contents, while inducing a pro-coagulant phenotype with increased fibrin formation and reduced integrin αIIbβ3 activation. Conclusively, this study reveals LPC-induced oxidative stress and calcium-mediated platelet death, necrotic in nature with pro-coagulant properties, potentially impacting inflammation and repair mechanisms during vascular injury.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 9","pages":"1266-1284"},"PeriodicalIF":3.3,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GOLPH3 inhibits erastin-induced ferroptosis in colorectal cancer cells GOLPH3 可抑制大肠癌细胞中由麦拉宁诱导的铁蛋白沉积。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-06-02 DOI: 10.1002/cbin.12190
Lihua Chen, Chunxiao Wang, Xiaojing Chen, Yuze Wu, Mingliang Chen, Xian Deng, Chengzhi Qiu
{"title":"GOLPH3 inhibits erastin-induced ferroptosis in colorectal cancer cells","authors":"Lihua Chen,&nbsp;Chunxiao Wang,&nbsp;Xiaojing Chen,&nbsp;Yuze Wu,&nbsp;Mingliang Chen,&nbsp;Xian Deng,&nbsp;Chengzhi Qiu","doi":"10.1002/cbin.12190","DOIUrl":"10.1002/cbin.12190","url":null,"abstract":"<p>Ferroptosis is a novel form of programmed cell death and is considered to be a druggable target for colorectal cancer (CRC) therapy. However, the role of ferroptosis in CRC and its underlying mechanism are not fully understood. In the present study we found that a protein enriched in the Golgi apparatus, Golgi phosphoprotein 3 (GOLPH3), was overexpressed in human CRC tissue and in several CRC cell lines. The expression of GOLPH3 was significantly correlated with the expression of ferroptosis-related genes in CRC. The overexpression of GOLPH3 in Erastin-induced Caco-2 CRC cells reduced ferroptotic phenotypes, whereas the knockdown of GOLPH3 potentiated ferroptosis in HT-29 CRC cells. GOLPH3 induced the expression of prohibitin-1 (PHB1) and prohibitin-2 (PHB2), which also inhibited ferroptosis in Erastin-treated CRC cells. Moreover, GOLPH3 interacted with PHB2 and nuclear factor erythroid 2-related factor 2 (NRF2) in Caco-2 cells. These observations indicate that GOLPH3 is a negative regulator of ferroptosis in CRC cells. GOLPH3 protects these cells from ferroptosis by inducing the expression of PHB1 and PHB2, and by interacting with PHB2 and NRF2.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 8","pages":"1198-1211"},"PeriodicalIF":3.3,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell and bulk RNA-sequencing reveals mitosis-involved gene HAUS1 is a promising indicator for predicting prognosis and immune responses in prostate adenocarcinoma (PRAD) 单细胞和大容量 RNA 测序发现,参与有丝分裂的基因 HAUS1 是预测前列腺癌(PRAD)预后和免疫反应的一个有前途的指标。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-05-31 DOI: 10.1002/cbin.12191
Shiwei Liu, Yang Yu, Jie Xu, Yi Wang, Deng Li
{"title":"Single-cell and bulk RNA-sequencing reveals mitosis-involved gene HAUS1 is a promising indicator for predicting prognosis and immune responses in prostate adenocarcinoma (PRAD)","authors":"Shiwei Liu,&nbsp;Yang Yu,&nbsp;Jie Xu,&nbsp;Yi Wang,&nbsp;Deng Li","doi":"10.1002/cbin.12191","DOIUrl":"10.1002/cbin.12191","url":null,"abstract":"<p>It was imperative to identify latent biomarkers pertinent to malignancies, given the pivotal role targeted molecular therapies play in tumor treatment investigations. This study aimed to assess the validity of HAUS1 as an indicator for survival prognosis and immune responses in prostate adenocarcinoma (PRAD) via single-cell and bulk RNA-sequencing. Related data on HAUS1 expression in PRAD were obtained from online databases, followed by comprehensive analyses to delineate its associations with survival prognosis, implicated pathways, and immune responses. Besides, the expression pattern of HAUS1 in PRAD was also verified in vitro, by using qRT-PCR, Western blot analysis, and immunohistochemistry. We found HAUS1 was downregulated in PRAD compared with normal tissues, as verified in vitro by qRT-PCR, Western blot, and immunohistochemistry (<i>p</i> &lt; 0.05). Single-cell RNA-sequencing analysis indicated that HAUS1 had relatively higher expressions in B cells, Mono/Macro cells, and Endothelial cells compared with other cell types. Cox regression analysis revealed HAUS1 could serve as an independent indicator for the overall survival prognosis of PRAD (<i>p</i> &lt; 0.05). Spearman correlation analyses revealed HAUS1 was closely related to the tumor microenvironment, immune cell infiltration levels, immune checkpoints, and immune cell pathways (<i>p</i> &lt; 0.05). Furthermore, HAUS1 expression was found to be closely related to the immunotherapeutic response of patients receiving clinical intervention (<i>p</i> &lt; 0.05). Collectively, our findings underscored the significant role of HAUS1 in PRAD prognosis and immune response, thereby presenting a novel and promising avenue for investigating the clinical utility of immunotherapy in PRAD.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 8","pages":"1169-1184"},"PeriodicalIF":3.3,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The PI3K/Akt signaling axis and type 2 diabetes mellitus (T2DM): From mechanistic insights into possible therapeutic targets PI3K/Akt 信号轴与 2 型糖尿病(T2DM):从机理洞察到可能的治疗靶点。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-05-29 DOI: 10.1002/cbin.12189
Rana Taheri, Yazdan Mokhtari, Amir-Mohammad Yousefi, Davood Bashash
{"title":"The PI3K/Akt signaling axis and type 2 diabetes mellitus (T2DM): From mechanistic insights into possible therapeutic targets","authors":"Rana Taheri,&nbsp;Yazdan Mokhtari,&nbsp;Amir-Mohammad Yousefi,&nbsp;Davood Bashash","doi":"10.1002/cbin.12189","DOIUrl":"10.1002/cbin.12189","url":null,"abstract":"<p>Type 2 diabetes mellitus (T2DM) is an immensely debilitating chronic disease that progressively undermines the well-being of various bodily organs and, indeed, most patients succumb to the disease due to post-T2DM complications. Although there is evidence supporting the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway by insulin, which is essential in regulating glucose metabolism and insulin resistance, the significance of this pathway in T2DM has only been explored in a few studies. The current review aims to unravel the mechanisms by which different classes of PI3Ks control the metabolism of glucose; and also to discuss the original data obtained from international research laboratories on this topic. We also summarized the role of the PI3K/Akt signaling axis in target tissues spanning from the skeletal muscle to the adipose tissue and liver. Furthermore, inquiries regarding the impact of disrupting this axis on insulin function and the development of insulin resistance have been addressed. We also provide a general overview of the association of impaired PI3K/Akt signaling pathways in the pathogenesis of the most prevalent diabetes-related complications. The last section provides a special focus on the therapeutic potential of this axis by outlining the latest advances in active compounds that alleviate diabetes via modulation of the PI3K/Akt pathway. Finally, we comment on the future research aspects in which the field of T2DM therapies using PI3K modulators might be developed.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 8","pages":"1049-1068"},"PeriodicalIF":3.3,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信