Cell Biology International最新文献

筛选
英文 中文
7-amino carboxycoumarin 2 inhibits lactate induced epithelial-to-mesenchymal transition via MPC1 in oral and breast cancer cells 7-amino carboxycoumarin 2 可通过 MPC1 抑制乳酸诱导的口腔癌和乳腺癌细胞上皮细胞向间质转化。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-05-21 DOI: 10.1002/cbin.12172
Sheikh Mohammad Umar, Arundhathi J. R. Dev, Akanksha Kashyap, Meetu Rathee, Shyam S. Chauhan, Atul Sharma, Chandra Prakash Prasad
{"title":"7-amino carboxycoumarin 2 inhibits lactate induced epithelial-to-mesenchymal transition via MPC1 in oral and breast cancer cells","authors":"Sheikh Mohammad Umar,&nbsp;Arundhathi J. R. Dev,&nbsp;Akanksha Kashyap,&nbsp;Meetu Rathee,&nbsp;Shyam S. Chauhan,&nbsp;Atul Sharma,&nbsp;Chandra Prakash Prasad","doi":"10.1002/cbin.12172","DOIUrl":"10.1002/cbin.12172","url":null,"abstract":"<p>Lactate is an oncometabolite that play important role in tumor aggressiveness. Lactate from the tumor microenvironment (TME) is taken up by cancer cells as an energy resource via mitochondrial oxidative phosphorylation (or OXPHOS). In the present study, by using an online meta-analysis tool we demonstrated that in oral squamous cancer cells (OSCCs) glycolytic and OXPHOS governing genes are overexpressed, like in breast cancer. For experimental demonstration, we treated the OSCC cell line (SCC4) and breast cancer cells (MDA-MB-231) with sodium L-lactate and analyzed its effects on changes in EMT and migration. For the therapeutic intervention of lactate metabolism, we used AZD3965 (an MCT1 inhibitor), and 7ACC2 (an MPC inhibitor). Like breast cancer, oral cancer tissues showed increased transcripts of 12 genes that were previously shown to be associated with glycolysis and OXPHOS. We experimentally demonstrated that L-lactate treatment induced mesenchymal markers and migration of cancer cells, which was significantly neutralized by MPC inhibitor that is, 7ACC2. Such an effect on EMT status was not observed with AZD3965. Furthermore, we showed that lactate treatment increases the MPC1 expression in both cancer cells, and this might be the reason why cancer cells in the high lactate environment are more sensitive to 7ACC2. Overall, our present findings demonstrate that extracellular lactate positively regulates the MPC1 protein expression in cancer cells, thereby putting forward the notion of using 7ACC2 as a potential therapeutic alternative to inhibit malignant oxidative cancers. Future preclinical studies are warranted to validate the present findings.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141074962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TRIM47 promotes HDM-induced bronchial epithelial pyroptosis by regulating NEMO ubiquitination to activate NF-κB/NLRP3 signaling TRIM47通过调节NEMO泛素化来激活NF-κB/NLRP3信号,从而促进HDM诱导的支气管上皮细胞脓毒症。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-05-20 DOI: 10.1002/cbin.12186
Wenjuan Zhan, Huifang Zhang, Yufei Su, Li Yin
{"title":"TRIM47 promotes HDM-induced bronchial epithelial pyroptosis by regulating NEMO ubiquitination to activate NF-κB/NLRP3 signaling","authors":"Wenjuan Zhan,&nbsp;Huifang Zhang,&nbsp;Yufei Su,&nbsp;Li Yin","doi":"10.1002/cbin.12186","DOIUrl":"10.1002/cbin.12186","url":null,"abstract":"<p>Asthma is an inflammatory disease. Airway epithelial cell pyroptosis and cytokine secretion promote asthma progression. Tripartite motif 47 (TRIM47) belongs to the E3 ubiquitin ligase family and is associated with apoptosis and inflammation in a range of diseases. However, the role of TRIM47 in asthma has not been explored. In this study, the human bronchial epithelial cell line BEAS-2B was treated with house dust mite (HDM) and TRIM47 expression was detected by RT-qPCR and Western blot. After transfection with TRIM47 interfering and overexpressing plasmids, the synthesis and secretion of cytokines, as well as pyroptosis-related indicators, were examined. Nuclear factor kappa-B (NF-κB) pathway proteins and nod-like receptor protein 3 (NLRP3) inflammasome were measured to explore the mechanism of TRIM47 action. In addition, the effect of TRIM47 on the level of NF-κB essential modulator (NEMO) ubiquitination was detected by an immunoprecipitation assay. The results showed that TRIM47 was upregulated in HDM-induced BEAS-2B cells and that TRIM47 mediated HDM-induced BEAS-2B cell pyroptosis and cytokine secretion. Mechanistically, TRIM47 promoted the K63-linked ubiquitination of NEMO and facilitated NF-κB/NLRP3 pathway activation. In conclusion, TRIM47 may promote cytokine secretion mediating inflammation and pyroptosis in bronchial epithelial cells by activating the NF-κB/NLRP3 pathway. Therefore, TRIM47 may be a potential therapeutic target for HDM-induced asthma.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serum IL-24 combined with CA125 as screening and prognostic biomarkers for NSCLC 血清 IL-24 与 CA125 结合作为 NSCLC 的筛查和预后生物标志物。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-05-15 DOI: 10.1002/cbin.12173
Kai Zhang, Jiao Qu, Shu Deng, Enwu Yuan
{"title":"Serum IL-24 combined with CA125 as screening and prognostic biomarkers for NSCLC","authors":"Kai Zhang,&nbsp;Jiao Qu,&nbsp;Shu Deng,&nbsp;Enwu Yuan","doi":"10.1002/cbin.12173","DOIUrl":"10.1002/cbin.12173","url":null,"abstract":"<p>Noninvasive and effective methods for early screening of non-small cell lung cancer (NSCLC) still need to be developed. At present, a reasonable conclusion is that a combination of tumor markers is a superior predictor of screening. Cytokines, as important regulators of cancer development, have great potential for the screening and prognosis of NSCLC. This study screened novel biomarkers related to the early screening and prognosis of NSCLC. In the present study, the biological significance and immunoregulation of interleukin-24 (IL-24) were analyzed based on The Cancer Genome Atlas data. Next, 150 serum samples from initially treated patients with NSCLC and 70 controls were collected, and we obtained pathological sections from 60 patients with NSCLC. The ELISA and immunohistochemistry results showed the differential expression of IL-24 and carbohydrate antigen 125 (CA125). The results show that IL-24 is an important tumor suppressor in NSCLC that helps to improve the poor prognosis of these patients. A significantly negative correlation between IL-24 and CA125 levels was also found. Notably, serum IL-24 levels were significantly negatively correlated with the TNM stage of patients with NSCLC, consistent with an important role for tumor suppressors in NSCLC. The receiver operating characteristic curve analysis showed that a combination of IL-24 and CA125 was an effective panel for discriminating patients with NSCLC from HD, and individuals with other lung diseases. Serum IL-24 and CA125 levels were identified as independent prognostic markers for NSCLC. The IL-24 and CA125 panel exhibited good performance in the screening of NSCLC.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbin.12173","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adipose-derived mesenchymal stem cells ameliorates experimental autoimmune encephalomyelitis via modulation of Th1/Th17 and expansion of Th2/Treg responses 脂肪间充质干细胞通过调节Th1/Th17反应和扩大Th2/Treg反应改善实验性自身免疫性脑脊髓炎
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-05-14 DOI: 10.1002/cbin.12171
Simin Zargarani, Maryam J. Tavaf, Azita Soltanmohammadi, Esmaeil Yazdanpanah, Rasoul Baharlou, Bahman Yousefi, Bizhan Sadighimoghaddam, Seyed-Alireza Esmaeili, Dariush Haghmorad
{"title":"Adipose-derived mesenchymal stem cells ameliorates experimental autoimmune encephalomyelitis via modulation of Th1/Th17 and expansion of Th2/Treg responses","authors":"Simin Zargarani,&nbsp;Maryam J. Tavaf,&nbsp;Azita Soltanmohammadi,&nbsp;Esmaeil Yazdanpanah,&nbsp;Rasoul Baharlou,&nbsp;Bahman Yousefi,&nbsp;Bizhan Sadighimoghaddam,&nbsp;Seyed-Alireza Esmaeili,&nbsp;Dariush Haghmorad","doi":"10.1002/cbin.12171","DOIUrl":"10.1002/cbin.12171","url":null,"abstract":"<p>The most common central nervous system (CNS) inflammatory disease is multiple sclerosis (MS), modeled using experimental autoimmune encephalomyelitis (EAE). Mesenchymal stem cells (MSCs) exhibit potent immunomodulatory capabilities, including the suppression of immune cell functions and anti-inflammatory cytokine production. Female C57BL/6 mice (8–10 weeks old) were divided into three groups: 1. Control, 2. Allogeneic MSCs (ALO) treatment, and 3. Syngeneic MSCs (SYN) treatment. To induce EAE, myelin oligodendrocyte glycoprotein was injected subcutaneously with complete Freund's adjuvant, followed by intraperitoneal pertussis toxin. On Days 6 and 12 postimmunization, the treatment groups received intraperitoneal injections of 2 × 10<sup>6</sup> MSCs. Daily clinical and weight assessments were performed, and on Day 25, the mice were euthanized. At the end of the period, brain histological analysis was conducted to quantify lymphocyte infiltration. T-cell characteristics were determined using enzyme-linked immunosorbent assay and Real-time polymerase chain reaction (RT-PCR). The assessment of transcription factor expression levels in the CNS was also performed using RT-PCR. Compared to the control group, both the allogeneic (ALO) and syngeneic (SYN) groups demonstrated significantly reduced disease progression. The maximum clinical scores for the control, ALO, and SYN groups were 4.4 ± 0.1, 2.4 ± 0.2, and 2.1 ± 0.2, respectively (ALO and SYN vs. Control: <i>p</i> &lt; .001). In comparison to the control group, histological studies demonstrated that the allogeneic and syngeneic groups had less lymphocytic infiltration (ALO: 1.4 ± 0.1, SYN: 1.2 ± 0.2, and control: 2.8 ± 0.15; <i>p</i> &lt; .001) and demyelination (ALO: 1.2 ± 0.15, SYN: 1.1 ± 0.1 and control: 2.9 ± 0.1, <i>p</i> &lt; .001). ALO and SYN groups had lower expression of Th1 and Th17 cytokines and transcription factors (IFN-γ: 0.067, 0.051; STAT4: 0.189, 0.162; T-bet: 0.175, 0.163; IL-17: 0.074, 0.061; STAT3: 0.271, 0.253; ROR-γt: 0.163, 0.149, respectively) compared to the control group on Day 25 following EAE induction. Additionally, ALO and SYN groups compared to the control group, expressed more Th2 and Treg cytokines and transcription factors (IL-4: 4.25, 4.63; STAT6: 2.78, 2.96; GATA3: 2.91, 3.08; IL-27: 2.32, 2.46, IL-33: 2.71, 2.85; TGF-β: 4.8, 5.05; IL-10: 4.71, 4.93; CTLA-4: 7.72, 7.95; PD1: 4.12,4.35; Foxp3: 3.82,4.08, respectively). This research demonstrated that MSCs possess the potential to be a therapeutic option for MS and related CNS inflammatory disorders. Their immunomodulatory properties, coupled with the observed reductions in disease severity, lymphocytic infiltration, and demyelination, indicate that MSCs could play a crucial role in altering the course of MS by mitigating inflammatory immune responses and promoting regulatory immune processes. These findings open up new possibilities for the development of MSC-based therapies for MS, and further investigation and","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Osthole exhibits the remedial potential for polycystic ovary syndrome mice through Nrf2-Foxo1-GSH-NF-κB pathway Osthole通过Nrf2-Foxo1-GSH-NF-κB途径对多囊卵巢综合征小鼠具有治疗潜力。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-05-13 DOI: 10.1002/cbin.12170
Shan Jin, Yu-Si Wang, Ji-Cheng Huang, Ting-Ting Wang, Bai-Yu Li, Bin Guo, Zhan-Peng Yue
{"title":"Osthole exhibits the remedial potential for polycystic ovary syndrome mice through Nrf2-Foxo1-GSH-NF-κB pathway","authors":"Shan Jin,&nbsp;Yu-Si Wang,&nbsp;Ji-Cheng Huang,&nbsp;Ting-Ting Wang,&nbsp;Bai-Yu Li,&nbsp;Bin Guo,&nbsp;Zhan-Peng Yue","doi":"10.1002/cbin.12170","DOIUrl":"10.1002/cbin.12170","url":null,"abstract":"<p>Polycystic ovary syndrome (PCOS) is the primary cause of female infertility with a lack of universal therapeutic regimen. Although osthole exhibits numerous pharmacological activities in treating various diseases, its therapeutic effect on PCOS is undiscovered. The present study found that application of osthole improved the symptoms of PCOS mice through preventing ovarian granulosa cells (GCs) production of more estrogen and alleviating the liberation of pro-inflammatory cytokine interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha. Meanwhile, osthole enhanced ovarian antioxidant capacity and alleviated intracellular reactive oxygen species (ROS) accumulation with a concurrent attenuation for oxidative stress, while intervention of antioxidant enzymic activity and glutathione (GSH) synthesis neutralized the salvation of osthole on GCs secretory disorder and chronic inflammation. Further analysis revealed that osthole restored the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and forkhead box O 1 (Foxo1) whose repression antagonized the amelioration of osthole on the insufficiency of antioxidant capacity and accumulation of ROS. Moreover, Nrf2 served as an intermedium to mediate the regulation of osthole on Foxo1. Additionally, osthole restricted the phosphorylation of IκBα and nuclear factor kappa B (NF-κB) subunit p65 by DHEA and weakened the transcriptional activity of NF-κB, but this effectiveness was abrogated by the obstruction of Nrf2 and Foxo1, whereas adjunction of GSH renewed the redemptive effect of osthole on NF-κB whose activation caused an invalidation of osthole in rescuing the aberration of GCs secretory function and inflammation response. Collectively, osthole might relieve the symptoms of PCOS mice via Nrf2-Foxo1-GSH-NF-κB pathway.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capsaicin reverses cisplatin resistance in tongue squamous cell carcinoma by inhibiting the Warburg effect and facilitating mitochondrial-dependent apoptosis via the AMPK/AKT/mTOR axis 辣椒素通过AMPK/AKT/mTOR轴抑制沃伯格效应并促进线粒体依赖性凋亡,从而逆转舌鳞状细胞癌的顺铂耐药性。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-05-05 DOI: 10.1002/cbin.12169
Xiayang Liu, Zhuang Li, Qiwei Zhao, Xinyue Zhou, Yu Wang, Gang Zhao, Xiaohong Guo
{"title":"Capsaicin reverses cisplatin resistance in tongue squamous cell carcinoma by inhibiting the Warburg effect and facilitating mitochondrial-dependent apoptosis via the AMPK/AKT/mTOR axis","authors":"Xiayang Liu,&nbsp;Zhuang Li,&nbsp;Qiwei Zhao,&nbsp;Xinyue Zhou,&nbsp;Yu Wang,&nbsp;Gang Zhao,&nbsp;Xiaohong Guo","doi":"10.1002/cbin.12169","DOIUrl":"10.1002/cbin.12169","url":null,"abstract":"<p>Cisplatin is commonly used for the chemotherapy of tongue squamous cell carcinoma (TSCC); however, adverse side effects and drug resistance impact its therapeutic efficacy. Capsaicin is an active ingredient in chili peppers that exerts antitumor effects, whether it exerts antitumor effects on cisplatin-resistant cells remains unknown. Therefore, in this study, we investigated the effect of capsaicin on cisplatin resistance in TSCC cells and explored the underlying mechanisms. A cisplatin-resistant TSCC cell line was established by treated with increasing cisplatin concentrations. Combined treatment with cisplatin and capsaicin decreased the glucose consumption and lactate dehydrogenase activity and increased the adenosine triphosphate production both in vitro and in vivo, suggesting the inhibition of the Warburg effect. Moreover, this combined treatment induced cell apoptosis and significantly upregulated the levels of proapoptotic proteins, such as Bax, cleaved caspase-3, -7, and -9, and apoptosis-inducing factor. In contrast, levels of the antiapoptotic protein, Bcl-2, were downregulated. Additionally, LKB1 and AMPK activities were stimulated, whereas those of AKT and mTOR were suppressed. Notably, <i>AMPK</i> knockdown abolished the inhibitory effects of capsaicin and cisplatin on the AKT/mTOR signaling pathway and Warburg effect. Overall, combined treatment with capsaicin and cisplatin reversed cisplatin resistance by inhibiting the Warburg effect and facilitating mitochondrial-dependent apoptosis via the AMPK/AKT/mTOR axis. Our findings suggest combination therapy with capsaicin and cisplatin as a potentially novel strategy and highlight capsaicin as a promising adjuvant drug for TSCC treatment.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140851656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high-throughput screen in mESCs to identify the cross-talk between signaling, endocytosis, and pluripotency 在 mESC 中进行高通量筛选,以确定信号传导、内吞和多能性之间的交叉联系。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-05-05 DOI: 10.1002/cbin.12168
Ridim D. Mote, Mahak Tiwari, Narayana Yadavalli, Raghav Rajan, Deepa Subramanyam
{"title":"A high-throughput screen in mESCs to identify the cross-talk between signaling, endocytosis, and pluripotency","authors":"Ridim D. Mote,&nbsp;Mahak Tiwari,&nbsp;Narayana Yadavalli,&nbsp;Raghav Rajan,&nbsp;Deepa Subramanyam","doi":"10.1002/cbin.12168","DOIUrl":"10.1002/cbin.12168","url":null,"abstract":"<p>Embryonic stem cell fate is regulated by various cellular processes. Recently, the process of endocytosis has been implicated in playing a role in the maintenance of self-renewal and pluripotency of mouse embryonic stem cells. A previous siRNA-based screen interrogated the function of core components of the endocytic machinery in maintaining the pluripotency of embryonic stem cells, revealing a crucial role for clathrin mediated endocytosis. A number of other proteins involved in key signaling pathways have also been shown to both regulate and be regulated by endocytosis. We collated a list of 1141 genes in connection to the term “endocytosis” from Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), excluding those previously interrogated, and examined the effect of their knockdown on the pluripotency of mouse embryonic stem cells (mESCs) using levels of green fluorescent protein driven by the Oct4 promoter. We used high-throughput screening followed by an automated MATrix LABoratory (MATLAB)-based analysis pipeline and assessed changes in GFP fluorescence as a readout for ESC pluripotency. Through this screen we identified a number of genes, many hitherto not associated with stem cell pluripotency, which upon knockdown either resulted in a significant increase or decrease of GFP fluorescence. We further present validation for some of these hits. We present a workflow aimed to identify genes involved in signaling pathways which can be regulated by endocytosis, and that affect the pluripotency of ESCs.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial administration alleviates lead- and cadmium-induced toxicity in rat renal cells 线粒体给药可减轻铅和镉诱导的大鼠肾细胞毒性
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-04-29 DOI: 10.1002/cbin.12165
Enayatollah Seydi, Alireza Kanani Nambani, Ali Khorasani, Farzaneh Kamranfar, Abdollah Arjmand, Jalal Pourahmad
{"title":"Mitochondrial administration alleviates lead- and cadmium-induced toxicity in rat renal cells","authors":"Enayatollah Seydi,&nbsp;Alireza Kanani Nambani,&nbsp;Ali Khorasani,&nbsp;Farzaneh Kamranfar,&nbsp;Abdollah Arjmand,&nbsp;Jalal Pourahmad","doi":"10.1002/cbin.12165","DOIUrl":"10.1002/cbin.12165","url":null,"abstract":"<p>The role of heavy metals such as lead (Pb) and cadmium (Cd) in the etiology of many diseases has been proven. Also, these heavy metals can affect the normal mitochondrial function. Mitochondrial administration therapy is one of the methods used by researchers to help improve mitochondrial defects and diseases. The use of isolated mitochondria as a therapeutic approach has been investigated in in vivo and in vitro studies. Accordingly, in this study, the effects of mitochondrial administration on the improvement of toxicity caused by Pb and Cd in renal proximal tubular cells (RPTC) have been investigated. The results showed that treatment to Pb and Cd caused an increase in the level of free radicals, lipid peroxidation (LPO) content, mitochondrial and lysosomal membrane damage, and also a decrease in the reduced glutathione content in RPTC. In addition, reports have shown an increase in oxidized glutathione content and changes in energy (ATP) levels. Following, the results have shown the protective role of mitochondrial administration in improving the toxicity caused by Pb and Cd in RPTC. Furthermore, the mitochondrial internalization into RPT cells is mediated through actin-dependent endocytosis. So, it could be suggested that the treatment of Pb- and Cd-induced cytotoxicity in RPTC could be carried out through mitochondria administration.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140841793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PAI-1 transfected-conditioned media promotes osteogenic differentiation of hBMSCs PAI-1 转染条件培养基可促进 hBMSCs 的成骨分化。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-04-23 DOI: 10.1002/cbin.12166
Zhang Li, Hou Kegui, Wang Piao, Wang Xuejiu, Ki-Taek Lim, Hexiu Jin
{"title":"PAI-1 transfected-conditioned media promotes osteogenic differentiation of hBMSCs","authors":"Zhang Li,&nbsp;Hou Kegui,&nbsp;Wang Piao,&nbsp;Wang Xuejiu,&nbsp;Ki-Taek Lim,&nbsp;Hexiu Jin","doi":"10.1002/cbin.12166","DOIUrl":"10.1002/cbin.12166","url":null,"abstract":"<p>Reconstruction of injured bone remains challenging in the clinic owing to the lack of suitable bone grafts. The utilization of PAI-1 transfected-conditioned media (P-CM) has demonstrated its ability to facilitate the differentiation process of mesenchymal stem cells (MSCs), potentially serving as a crucial mediator in tissue regeneration. This research endeavored to explore the therapeutic potential of P-CM concerning the differentiation of human bone marrow mesenchymal stem cells (hBMSCs). To assess new bone formation, a rat calvaria critical defect model was employed, while in vitro experiments involved the use of the alizarin Red-S mineral induction test. In the rat calvaria critical defect model, P-CM treatment resulted in significan new bone formation. In vitro, P-CM treated hBMSCs displayed robust osteogenesis compared to the control group, as demonstrated by the mineral induction test using alizarin Red-S. P-CM with hydroxyapatite/β-tricalcium phosphate/fibrin gel treatment significantly exhibited new bone formation, and the expression of osteogenic associated markers was enhanced in the P-CM-treated group. In conclusion, results demonstrate that P-CM treatment significantly enhanced the osteogenic differantiation efficiency and new bone formation, thus could be used as an ideal therapeutic biomolecule for constructing bone-specific implants, especially for orthopedic and dental applications.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140672142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vitronectin promotes insulin resistance in trophoblast cells by activating JNK in gestational diabetes mellitus 在妊娠糖尿病患者中,Vitronectin 通过激活 JNK 促进滋养层细胞的胰岛素抵抗。
IF 3.3 3区 生物学
Cell Biology International Pub Date : 2024-04-23 DOI: 10.1002/cbin.12167
Yuejun Ju, Ting Shen, Zhanhong Guo, Yinghong Kong, Yun Huang, Ji Hu
{"title":"Vitronectin promotes insulin resistance in trophoblast cells by activating JNK in gestational diabetes mellitus","authors":"Yuejun Ju,&nbsp;Ting Shen,&nbsp;Zhanhong Guo,&nbsp;Yinghong Kong,&nbsp;Yun Huang,&nbsp;Ji Hu","doi":"10.1002/cbin.12167","DOIUrl":"10.1002/cbin.12167","url":null,"abstract":"<p>Gestational diabetes mellitus (GDM) is a common disorder in the clinic, which may lead to severe detrimental outcomes both for mothers and infants. However, the underlying mechanisms for GDM are still not clear. In the present study, we performed label-free proteomics using placentas from GDM patients and normal controls. Vitronectin caused our attention among differentially expressed proteins due to its potential role in the pathological progression of GDM. Vitronectin was increased in the placentas of GDM patients, which was confirmed by Western blot analysis. Vitronectin represses insulin signal transduction in trophoblast cells, whereas the knockdown of vitronectin further potentiates insulin-evoked events. Neutralization of CD51/61 abolishes the repressed insulin signal transduction in vitronectin-treated trophoblast cells. Moreover, vitronectin activates JNK in a CD51/61-depedent manner. Inhibition of JNK rescues impaired insulin signal transduction induced by vitronectin. Overall, our data indicate that vitronectin binds CD51/61 in trophoblast cells to activate JNK, and thus induces insulin resistance. In this regard, increased expression of vitronectin is likely a risk factor for the pathological progression of GDM. Moreover, blockade of vitronectin production or its receptors (CD51/61) may have therapeutic potential for dealing with GDM.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140670779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信