Jingyi Mao, Xin Ma, Yuanyuan Sun, Wuqing Wang, Bin Li
{"title":"il - 17c介导的SMURF2上调通过促进PPP6C泛素化诱导角质形成细胞的银屑病变化","authors":"Jingyi Mao, Xin Ma, Yuanyuan Sun, Wuqing Wang, Bin Li","doi":"10.1002/cbin.70024","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Psoriasis, a persistent inflammatory skin condition, affects approximately 2%–3% of the world's population. Increased IL-17C levels are noted in psoriatic lesions, alongside IL-17's ability to diminish protein phosphatase 6 catalytic subunit (PPP6C) expression in keratinocytes. Additionally, SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) facilitates the degradation of specific substrates through ubiquitination. However, the precise mechanisms of action involving IL-17C, SMURF2, and PPP6C in psoriasis remain unclear. Therefore, this study aims to delve into how IL-17C, SMURF2, and PPP6C contribute to psoriasis development. A psoriasis mice model was established using 5% imiquimod cream. And the expression of IL-17C, SMURF2, and PPP6C was tested. Further, an investigation was conducted using experimental techniques such as CCK-8, flow cytometry, colony formation assay, ELISA, qRT-PCR, western blot assay, co-immunoprecipitation, and ubiquitination assays. Employing both lentiviral transfection and plasmid transfection methods, an in-depth investigation was conducted into the contributions of IL-17C, SMURF2, and PPP6C to psoriasis. The results showed that the IL-17C, Keratin 17 and SMURF2 were increased, and PPP6C was decreased in psoriasis mice model. Further, IL-17C enhanced the cell viability of human epidermal keratinocytes (HaCaT), induced inflammatory responses, and upregulated SMURF2 and Keratin 17 expression. When SMURF2 was silenced, the effects of IL-17C on HaCaT cells were significantly inhibited. Moreover, SMURF2 interacted with PPP6C, promoting its ubiquitination and degradation. Overexpression of SMURF2 further enhanced the effects of IL-17C on HaCaT cells by targeting PPP6C. In conclusion, our study uncovered the upregulation of SMURF2 mediated by IL-17C, leading to psoriasis-like alterations in keratinocytes through the promotion of PPP6C ubiquitination. This novel finding not only provides crucial insights into the molecular mechanisms of psoriasis but also offers potential avenues for innovative therapeutic strategies targeting this mechanism.</p>\n </div>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"49 7","pages":"798-809"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IL-17C-Mediated Upregulation of SMURF2 Induces Psoriatic Changes in Keratinocytes by Facilitating PPP6C Ubiquitination\",\"authors\":\"Jingyi Mao, Xin Ma, Yuanyuan Sun, Wuqing Wang, Bin Li\",\"doi\":\"10.1002/cbin.70024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Psoriasis, a persistent inflammatory skin condition, affects approximately 2%–3% of the world's population. Increased IL-17C levels are noted in psoriatic lesions, alongside IL-17's ability to diminish protein phosphatase 6 catalytic subunit (PPP6C) expression in keratinocytes. Additionally, SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) facilitates the degradation of specific substrates through ubiquitination. However, the precise mechanisms of action involving IL-17C, SMURF2, and PPP6C in psoriasis remain unclear. Therefore, this study aims to delve into how IL-17C, SMURF2, and PPP6C contribute to psoriasis development. A psoriasis mice model was established using 5% imiquimod cream. And the expression of IL-17C, SMURF2, and PPP6C was tested. Further, an investigation was conducted using experimental techniques such as CCK-8, flow cytometry, colony formation assay, ELISA, qRT-PCR, western blot assay, co-immunoprecipitation, and ubiquitination assays. Employing both lentiviral transfection and plasmid transfection methods, an in-depth investigation was conducted into the contributions of IL-17C, SMURF2, and PPP6C to psoriasis. The results showed that the IL-17C, Keratin 17 and SMURF2 were increased, and PPP6C was decreased in psoriasis mice model. Further, IL-17C enhanced the cell viability of human epidermal keratinocytes (HaCaT), induced inflammatory responses, and upregulated SMURF2 and Keratin 17 expression. When SMURF2 was silenced, the effects of IL-17C on HaCaT cells were significantly inhibited. Moreover, SMURF2 interacted with PPP6C, promoting its ubiquitination and degradation. Overexpression of SMURF2 further enhanced the effects of IL-17C on HaCaT cells by targeting PPP6C. In conclusion, our study uncovered the upregulation of SMURF2 mediated by IL-17C, leading to psoriasis-like alterations in keratinocytes through the promotion of PPP6C ubiquitination. This novel finding not only provides crucial insights into the molecular mechanisms of psoriasis but also offers potential avenues for innovative therapeutic strategies targeting this mechanism.</p>\\n </div>\",\"PeriodicalId\":9806,\"journal\":{\"name\":\"Cell Biology International\",\"volume\":\"49 7\",\"pages\":\"798-809\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology International\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbin.70024\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.70024","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
IL-17C-Mediated Upregulation of SMURF2 Induces Psoriatic Changes in Keratinocytes by Facilitating PPP6C Ubiquitination
Psoriasis, a persistent inflammatory skin condition, affects approximately 2%–3% of the world's population. Increased IL-17C levels are noted in psoriatic lesions, alongside IL-17's ability to diminish protein phosphatase 6 catalytic subunit (PPP6C) expression in keratinocytes. Additionally, SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) facilitates the degradation of specific substrates through ubiquitination. However, the precise mechanisms of action involving IL-17C, SMURF2, and PPP6C in psoriasis remain unclear. Therefore, this study aims to delve into how IL-17C, SMURF2, and PPP6C contribute to psoriasis development. A psoriasis mice model was established using 5% imiquimod cream. And the expression of IL-17C, SMURF2, and PPP6C was tested. Further, an investigation was conducted using experimental techniques such as CCK-8, flow cytometry, colony formation assay, ELISA, qRT-PCR, western blot assay, co-immunoprecipitation, and ubiquitination assays. Employing both lentiviral transfection and plasmid transfection methods, an in-depth investigation was conducted into the contributions of IL-17C, SMURF2, and PPP6C to psoriasis. The results showed that the IL-17C, Keratin 17 and SMURF2 were increased, and PPP6C was decreased in psoriasis mice model. Further, IL-17C enhanced the cell viability of human epidermal keratinocytes (HaCaT), induced inflammatory responses, and upregulated SMURF2 and Keratin 17 expression. When SMURF2 was silenced, the effects of IL-17C on HaCaT cells were significantly inhibited. Moreover, SMURF2 interacted with PPP6C, promoting its ubiquitination and degradation. Overexpression of SMURF2 further enhanced the effects of IL-17C on HaCaT cells by targeting PPP6C. In conclusion, our study uncovered the upregulation of SMURF2 mediated by IL-17C, leading to psoriasis-like alterations in keratinocytes through the promotion of PPP6C ubiquitination. This novel finding not only provides crucial insights into the molecular mechanisms of psoriasis but also offers potential avenues for innovative therapeutic strategies targeting this mechanism.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.