{"title":"Cetuximab functionalized chitosan/hyaluronic acid-based nanoparticles loaded with cabazitaxel enhances anti-tumor efficacy in DMBA-induced breast cancer model in rats through spatial targeting","authors":"Abhishek Jha , Pooja Goswami , Manish Kumar , Kanchan Bharti , Manjit Manjit , Amol P. Satpute , Ashutosh Gupta , Sudheer Moorkoth , Biplob Koch , Brahmeshwar Mishra","doi":"10.1016/j.chphi.2024.100750","DOIUrl":"10.1016/j.chphi.2024.100750","url":null,"abstract":"<div><div>The article discusses the ionic gelation of cationic chitosan (CS) with anionic hyaluronic acid (HA) sodium salt to form nanoparticles in the range of 125 nm. The particles were further functionalized with cetuximab to endow it with the ability to spatially target the tumor over-expressing EGFR. Solid-state characterization of the particles using XRD, FTIR, and DSC revealed the formation of stable nanoparticles with Cabazitaxel loaded in the amorphous nanostructure. XPS study used to assess the surface characteristics indicated that the cetuximab was successfully anchored on the surface of the particle. The prepared CS-HA-Cmab-NP elicited a pH-responsive drug release behavior due to the presence of CS in the matrix. In vitro performance of the nanoparticles was evaluated on MDA-MB-231 breast cancer cell lines showed overall increase in efficacy. In vivo pharmacokinetic and anti-tumor effect evaluated in female Sprague Dawley rats indicated that the Cmab-conjugated nanoparticles improved half-life of cabazitaxel and tumor reduction capability with higher survival rate and lower reduction in body weight. The results indicate that CS/HA nanoparticles anchored with cetuximab show enhanced efficacy in reducing the breast cancer tumor in DMBA-induced breast tumor model through spatial targeting, consequently reducing the systemic toxicity.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100750"},"PeriodicalIF":3.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jannatul Ferdous , Faizan Abul Qais , Ferdausi Ali , Debashis Palit , Imtiaj Hasan , Sarkar M.A. Kawsar
{"title":"FTIR, 1H-/13C-NMR spectral characterization, antimicrobial, anticancer, antioxidant, anti-inflammatory, PASS, SAR, and in silico properties of methyl α-D-glucopyranoside derivatives","authors":"Jannatul Ferdous , Faizan Abul Qais , Ferdausi Ali , Debashis Palit , Imtiaj Hasan , Sarkar M.A. Kawsar","doi":"10.1016/j.chphi.2024.100753","DOIUrl":"10.1016/j.chphi.2024.100753","url":null,"abstract":"<div><div>A novel series of biologically active derivatives based on methyl α-D-glucopyranoside (MGP) has been developed, comprising 6-<em>O</em>-monosubstituted MGP derivatives obtained from methyl α-D-glucopyranoside. These derivatives were transformed into 2,3,4-tri-<em>O</em>-acyl MGP derivatives, incorporating diverse functionalities within a single molecular framework, aimed at producing new products for antimicrobial studies. All synthesized compounds were identified through spectral analyses (FTIR, <sup>1</sup>H-NMR, and <sup>13</sup>C-NMR) and elemental analysis. Antimicrobial <em>in vitro</em> testing revealed that these MGP derivatives have notable efficacy against various pathogenic microorganisms, along with the prediction of activity spectra for substances (PASS). Compounds <strong>2</strong> and <strong>7</strong> exhibited the highest inhibitory activity against <em>Bacillus subtilis</em> and <em>Escherichia coli</em>, with minimum inhibitory concentration (MIC) values ranging from 0.25 to 64.0 µg/mL and minimum bactericidal concentration (MBC) values ranging from 8.0 to 128.0 µg/mL. Moreover, these compounds demonstrated significant antioxidant properties compared with those of standard antioxidants according to the results of the DPPH free radical scavenging assay. An evaluation of the growth and proliferation of Ehrlich ascites carcinoma (EAC) cells revealed moderate cell growth inhibition by compounds <strong>5</strong> and <strong>6</strong>, with IC<sub>50</sub> values of 5958.54 and 5437.17 µg/mL, respectively, as determined <em>via</em> an MTT colorimetric assay. An analysis of the structure-activity relationship (SAR) revealed that the combination of the (<em>p</em>-<em>C</em>H<sub>3</sub>.C<sub>6</sub>H<sub>4</sub>CO-) and halo-aromatic [3-Cl.C<sub>6</sub>H<sub>4</sub>CO-] chains with sugar had the highest efficiency in pathogens. Molecular docking studies using AutoDock Vina highlighted compound <strong>7</strong> as a promising inhibitor of the carbapenemase, OmpF, and HmoB proteins, with binding energies of -11.53 kcal/mol, -2.26 kcal/mol, and -30.75 kcal/mol, respectively. A 100-ns molecular dynamics simulation study demonstrated the validity of stable conformation and binding patterns in a stimulating environment. Pharmacokinetic characterization and ADMET predictions indicated favorable drug-like properties. These substantial <em>in vitro</em> and <em>in silico</em> studies demonstrate the importance of additional investigations to confirm the efficacy of MGP derivatives as antimicrobial agents.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100753"},"PeriodicalIF":3.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visible light-induced continuous process for photodegradation of chlorpyrifos using g-C3N4/GO/La2O3 photocatalyst from agricultural aquatic waste","authors":"Sahima Tabasum , Ajit Sharma , Nandini Dhupar , Upasana Bagri , Souheen Yousuf , Vibha Kumar , Atheesha Singh , Sudheesh K. Shukla","doi":"10.1016/j.chphi.2024.100751","DOIUrl":"10.1016/j.chphi.2024.100751","url":null,"abstract":"<div><div>The widespread use of pesticides and the formation of by-products on the gradual decomposition of these pesticides have led to environmental pollution, which in turn has caused harm to both human and ecosystem health. Pesticides have been found in water bodies worldwide and are a cause of concern. Photocatalytic reactions have received significant attention in the past few decades for the breakdown of pesticides. Different parameters were studied, including the effects of pH, kinetics, dose, and regeneration. The UV–vis spectroscopy results suggest that the g-C<sub>3</sub>N<sub>4</sub>/GO/La<sub>2</sub>O<sub>3</sub> nanocomposite is a superior reusable photocatalyst for the degradation of chlorpyrifos (CPF) compared to pure g-C<sub>3</sub>N<sub>4</sub> and GO/ g-C<sub>3</sub>N<sub>4</sub>. This is demonstrated by the fact that the g-C<sub>3</sub>N<sub>4</sub>/GO/La<sub>2</sub>O<sub>3</sub> nanocomposite outperforms both of these materials. The increased photocatalytic performance may be attributed to a balance between the band gap, morphology, crystalline quality, and surface area, all of which may be slowing down the electron-hole recombination rates. This may be due to the enhanced photocatalytic performance. In addition, the feasible processes were outlined from radical quenching studies, and the results clearly indicate that the presence of more OH radicals plays an essential role in the process of efficient photodegradation using novel g-C<sub>3</sub>N<sub>4</sub>/GO/La<sub>2</sub>O<sub>3</sub> nanocomposites.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100751"},"PeriodicalIF":3.8,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and investigation of the optical characteristics of RE3+ activated Ca2Li2Si2O7 (Rare earth = Eu, Tb) phosphor for W-LED application","authors":"Pragati Tale , Ashok Mistry , Bharti Bawanthade , Ashish Mathur , S.J. Dhoble","doi":"10.1016/j.chphi.2024.100752","DOIUrl":"10.1016/j.chphi.2024.100752","url":null,"abstract":"<div><div>Novel Eu<sup>3+</sup> and Tb<sup>3+</sup> ions-doped Ca<sub>2</sub>Li<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> luminescent materials were prepared by a low-temperature solid-state reaction technique for LED application. The electronic transitions of <sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub> (Eu<sup>3+</sup>) and <sup>5</sup>D<sub>4</sub> → <sup>7</sup>F<sub>5</sub> (Tb<sup>3+</sup>) have caused the luminescent material to exhibit strong luminosity in 613 nm (red) and 545 nm (green), respectively. Fourier transform infrared (FT-IR) spectra were applied for the identification of functional groups, and powder X-ray diffraction (XRD) was used for structural analysis. Morphological data was gathered using scanning electron microscopy (SEM). Its color was also determined by calculating the CIE coordinates. The excitation, PL properties, and luminescence decay time of the emission transitions of Eu<sup>3+</sup> (<sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub>) and Tb<sup>3+</sup> (<sup>5</sup>D<sub>4</sub> → <sup>7</sup>F<sub>5</sub>) were measured in order to analyze luminosity spectra.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100752"},"PeriodicalIF":3.8,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Redi Kristian Pingak , Amine Harbi , Soukaina Bouhmaidi , Albert Z. Johannes , Nikodemus U.J. Hauwali , Wahidullah Khan , Fidelis Nitti , David Tambaru , M. Moutaabbid , Larbi Setti
{"title":"Novel Tl2GeX6 (X=Cl,Br) double perovskites for solar cell, optoelectronic, and thermoelectric applications: A DFT investigation","authors":"Redi Kristian Pingak , Amine Harbi , Soukaina Bouhmaidi , Albert Z. Johannes , Nikodemus U.J. Hauwali , Wahidullah Khan , Fidelis Nitti , David Tambaru , M. Moutaabbid , Larbi Setti","doi":"10.1016/j.chphi.2024.100749","DOIUrl":"10.1016/j.chphi.2024.100749","url":null,"abstract":"<div><div>This study aims to investigate the structural, mechanical, optical, electronic, and thermoelectric properties of novel double perovskites Tl<sub>2</sub>GeCl<sub>6</sub> and Tl<sub>2</sub>GeBr<sub>6</sub>. The Quantum Espresso code was employed to perform the Density Functional Theory (DFT) calculation on the perovskites’ characteristics. The results indicated that both materials exhibit chemical and structural stability, with equilibrium lattice constants of 10.08 Å and 10.55 Å for Tl<sub>2</sub>GeCl<sub>6</sub> and Tl<sub>2</sub>GeBr<sub>6</sub>, respectively. The calculated elastic parameters and elastic moduli data also demonstrated that the new double perovskites exhibit mechanical stability while the calculated electronic band structure and the density of states using the PBE functional indicated that the materials are semiconductors with energy gap values of 0.3 eV for Tl<sub>2</sub>GeBr<sub>6</sub> and 1.72 eV for Tl<sub>2</sub>GeCl<sub>6</sub>, respectively. Using more accurate SCAN approximation, the energy gaps were refined to 0.53 eV for Tl<sub>2</sub>GeBr<sub>6</sub> and 2.10 eV for Tl<sub>2</sub>GeCl<sub>6</sub>. Additionally, the calculated dielectric functions, extinction coefficient and absorption coefficients of Tl<sub>2</sub>GeCl<sub>6</sub> and Tl<sub>2</sub>GeBr<sub>6</sub> strongly suggest the exceptional optical response of these materials. Notably, Tl<sub>2</sub>GeBr<sub>6</sub> is estimated to have a particularly strong visible-light absorption capacity, positioning it as a promising absorber for perovskite solar cells. These findings are also supported by the low reflectivity values observed. Finally, the analysis of their thermoelectric properties revealed the excellent thermoelectric properties of Tl<sub>2</sub>GeCl<sub>6</sub> and Tl<sub>2</sub>GeBr<sub>6</sub>, as indicated by their high figures of merit, predicted to be 0.73 and 0.68 for the respective perovskites.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100749"},"PeriodicalIF":3.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Swati Gajbhiye , Yatish R. Parauha , Naumov G. Nikolay , S.J. Dhoble
{"title":"Structural and luminescence properties of Y2O3:Ho3+ phosphor: Potential applications in plant cultivation LEDs and thermoluminescent dosimetry","authors":"Swati Gajbhiye , Yatish R. Parauha , Naumov G. Nikolay , S.J. Dhoble","doi":"10.1016/j.chphi.2024.100746","DOIUrl":"10.1016/j.chphi.2024.100746","url":null,"abstract":"<div><div>Current research on Y<sub>2</sub>O<sub>3</sub>:Ho<sup>3+</sup> phosphors highlight their promising luminescence properties, but often lacks an environmentally friendly synthesis method and comprehensive analysis of their applications. In this study, we address these gaps by successfully synthesizing Y<sub>2</sub>O<sub>3</sub>:Ho<sup>3+</sup> phosphors using a green synthesis route with varying concentrations of Ho<sup>3+</sup>. Our work provides detailed characterization of their photoluminescence (PL) and thermoluminescent (TL) properties. The PL excitation (PLE) spectra reveal a distinct peak at 439 nm, attributed to the <sup>5</sup>I<sub>8</sub>→(<sup>5</sup>K<sub>5</sub>; <sup>5</sup>G<sub>5</sub>) transition of Ho<sup>3+</sup>ions. Upon excitation at 439 nm, the emission spectra show a sharp emission peak around 660 nm from the <sup>5</sup>F<sub>5</sub>→<sup>5</sup>I<sub>8</sub> transition, with the 0.1 mol% Ho<sup>3+</sup> phosphors exhibiting particularly strong red emission, indicating their suitability for indoor plant cultivation under LED lighting. Additionally, TL properties were evaluated after gamma-ray exposure, with the highest emission intensity at 0.1 mol% Ho<sup>3+</sup> concentration. TL glow curves were analyzed for various radiation doses using the Computerized Glow Curve Deconvolution (CGCD) method, and TL trapping parameters were determined through Chen's peak shape and the Initial Rise methods. This work demonstrates significant potential for using these phosphors to enhance indoor plant growth and for applications in thermoluminescent dosimetry (TLD).</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100746"},"PeriodicalIF":3.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transport and Kinetic Property of the Butyric Acid in Water: A Simulation Study","authors":"Priya Dey , Vishal Singh , Hemant Kumar","doi":"10.1016/j.chphi.2024.100744","DOIUrl":"10.1016/j.chphi.2024.100744","url":null,"abstract":"<div><div>Microbiota is defined as a class of all microorganisms which includes fungi, protozoa, bacteria and viruses. About 90 % of all microbiota in our body are found in our gut that regulates host immunity. The gut-brain axis is a bidirectional communication system that allows gut microbiota to communicate with the brain and <em>vice versa</em>. Studies suggest that the gut dysbiosis may enhance neurotoxic substances such as short-chain fatty-acids (SCFAs which are acetate, propionate, and butyrate) to the blood circulation and even to the brain through damaged blood brain barrier (BBB) and may cause protein aggregation which are implicated in the pathogenesis of several neurodegenerative diseases like Alzheimer’s disease (AD), Parkinson’s disease (PD), prion disease, motor neuron disease, Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS). Specifically, butyric acid are the main SCFA product that may impact on gut health. Therefore, this article aims to investigate the transport and kinetic properties such as diffusion coefficient, activation energy and <em>radial</em> distribution function of butyric acid in water at different temperatures through molecular dynamics simulations. The self and binary diffusion coefficient of butyric acid in water obtained from our MD simulation are found to be <span><math><mrow><mn>0.8699</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>9</mn></mrow></msup><msup><mi>m</mi><mn>2</mn></msup><msup><mi>s</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>0.8714</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>9</mn></mrow></msup><msup><mi>m</mi><mn>2</mn></msup><msup><mi>s</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, respectively at 300 K and the activation energy for self-diffusion coefficient of water estimated from the slope of <span><math><mrow><mi>l</mi><mi>n</mi><mo>(</mo><mi>D</mi><mo>)</mo></mrow></math></span> versus <span><math><mrow><mn>1</mn><mo>/</mo><mi>T</mi></mrow></math></span> is equal to 16.07 kJ/mol. Our results are in accordance with those obtained from the experimental values. This study offers an alternate approach to researching the diffusion of butyric acid in living organisms. This knowledge contributes to advancements in various fields, including nutrition, gastroenterology, microbiology, and pharmacology.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100744"},"PeriodicalIF":3.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Safeena Zafar , Bilal Ahmad Khan , Ikhtiar Ahmad , Muhammad Naeem Ahmed , Aroosa Zafar , Rasool Khan , Mohamed A. El-Tayeb , Ahmed M. Awad , Tamer Shoeib , Mahmoud A.A. Ibrahim
{"title":"Elucidating the potential of bimetallic mixed metal oxide (FeO/NiO) in fusion with pristine and N- and S-doped graphene oxide for biomedical applications","authors":"Safeena Zafar , Bilal Ahmad Khan , Ikhtiar Ahmad , Muhammad Naeem Ahmed , Aroosa Zafar , Rasool Khan , Mohamed A. El-Tayeb , Ahmed M. Awad , Tamer Shoeib , Mahmoud A.A. Ibrahim","doi":"10.1016/j.chphi.2024.100748","DOIUrl":"10.1016/j.chphi.2024.100748","url":null,"abstract":"<div><div>Antimicrobial resistance is attributed to acquiring new mechanisms by microbes to combat antimicrobial agents, highlighting the necessity to discover new antimicrobial agents to protect human health. Graphene and its derivatives have shown antimicrobial potential due to their physical and chemical distinctive features. Potent antibacterial properties were observed by decorating the surface of graphene and its derivatives with inorganic nanoparticles, such as metal and metal oxide. In an attempt to reliably overcome antimicrobial resistance, the multifunctional nanocomposites, including FeO/NiO, FeO/NiO/GO, FeO/NiO/N-GO, and FeO/NiO/S-GO, were synthesized using a wet chemical method. Accordingly, the structural analysis was performed using X-ray diffraction (XRD), infrared spectroscopy (IR), energy dispersive X-ray (EDX), ultraviolet-visible spectroscopy (UV–vis), and scanning electron microscopy (SEM). For antibacterial potential, the synthesized nanocomposites were tested against non-resistant and resistant strains of bacteria. Notably, moderate antibacterial potential was found for FeO/NiO/N-GO nanocomposite with a MIC value of 12.5 μg/mL, compared to the MIC of pure Ciprofloxacin, a positive control, with a value of 1.25 μg/mL. Toward antifungal potential, the synthesized nanocomposites were assessed against various spores of fungal strains. In this regard, the synthesized nanocomposites were demonstrated as potent antifungal agents. Among the synthesized nanocomposites, FeO/NiO and FeO/NiO/S-GO exhibited the highest ZOI against <em>Aspergillus flavus</em>. Additionally, the activity of these nanocomposites was evaluated by means of total reducing power (TRP), total antioxidant capacity (TAC), and free radical scavenging. Further, the antioxidant, brine shrimp lethality, and hemolytic potential of the synthesized nanocomposites were evaluated to compare their effectiveness. According to brine shrimp lethality, all synthesized nanocomposites were sufficiently active, with a calculated median lethal concentration (LC<sub>50</sub>) showing ≥ 50 % mortality. The obtained results provide a promising base for the incorporation of nanocomposites in pharmaceutical and biomedical products.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100748"},"PeriodicalIF":3.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioprospection for antiviral compounds from selected medicinal plants against RNA polymerase of rotavirus A using molecular modelling and density functional theory","authors":"Adedayo Ayodeji Lanrewaju, Abimbola Motunrayo Folami, Saheed Sabiu, Feroz Mahomed Swalaha","doi":"10.1016/j.chphi.2024.100745","DOIUrl":"10.1016/j.chphi.2024.100745","url":null,"abstract":"<div><div>Rotavirus A (RVA) infection remains a significant global health challenge, especially in developing countries, causing severe dehydrating diarrhoea in children under five years of age. Despite the availability of four World Health Organization (WHO) pre-qualified vaccines, their availability, particularly in low-income countries, pose significant challenges. Currently, there are no specific anti-rotaviral medications hence, the urgency to develop novel therapeutics against rotavirus infection. Thus, this study explored the potential of secondary metabolites of <em>Spondias mombin, Macaranga barteri</em> and <em>Dicerocaryum eriocarpum</em> as novel inhibitors of the RNA-dependent RNA polymerase (VP1) of rotavirus A using computational techniques. Pharmacokinetics parameters were adopted to screen the top 20 metabolites with high affinity for the target, initially identified through a docking study. Furthermore, the ability of the resulting compounds to modulate the investigated target was assessed using molecular dynamics (MD) simulation, while density functional theory (DFT) calculations were conducted to predict the molecular properties of the top-ranked compounds. Except for ellagic acid hexoside (-33.14 kcal/mol), all the leads had higher binding free energy values relative to sofosbuvir (-36.58 kcal/mol) following a 120 ns MD simulation. Overall, the resulting complexes with the lead compounds demonstrated acceptable stability, reduced flexibility and compactness, with spiraeoside (-51.02 kcal/mol) displaying more favourable thermodynamics metrics, albeit with a lesser binding free energy relative to chrysoeriol 7-glucuronide (-58.36 kcal/mol). The binding free energy and thermodynamic parameters of the top-hit compounds could be attributed to their respective bond interactions and molecular orbital properties except chrysoeriol 7-glucuronide, with a need for additional structural adjustment to enhance its thermodynamic properties. Thus, these findings indicate the potential modulatory ability of the lead compounds against the VP1 protein of RVA, underscoring the importance of further <em>in vitro</em> and <em>in vivo</em> studies to validate the predicted activity, and ongoing efforts are being made to pursue this line of investigation.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100745"},"PeriodicalIF":3.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physicochemical and catalytic behavior of binary mixtures of n-alkyl imidazolium bromide ionic liquids with poly (ethylene glycol)-400: Application of flory statistical theory","authors":"Anup Kumar , Arun Upmanyu , Monika Dhiman , S.C. Sharma , Krishna Kumar Pandey , K.C. Juglan","doi":"10.1016/j.chphi.2024.100747","DOIUrl":"10.1016/j.chphi.2024.100747","url":null,"abstract":"<div><div>In this work, Flory statistical theory is employed to predict the important physicochemical properties namely density, isothermal compressibility, internal pressure, coefficient of volume expansion, energy of vaporization, heat of vaporization, cohesive energy density, solubility parameter and polarity index for three binary mixtures of PEG-400 + [C<sub>n</sub>Mim][Br], where n=4, 6, and 8 at different temperatures (T= 298.15 K, 308.15 K, and 318.15 K). Furthermore, the applicability of Flory statistical theory to predict certain physicochemical properties has been verified. Excess properties viz., excess enthalpy, excess Gibbs free energy, and excess entropy are also determined for these binary mixtures. The variation of energy of vaporization, heat of vaporization, solubility parameter and excess parameters are used to analyze the catalytic behavior and prevalent molecular interactions of these mixtures.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100747"},"PeriodicalIF":3.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}