Anji Reddy Polu , Faisal Islam Chowdhury , Pramod K. Singh , Markus Diantoro , Firdaus Mohamad Hamzah
{"title":"Enhancing the properties of PEG-based solid polymer electrolytes with TiO2 nanoparticles for potassium ion batteries","authors":"Anji Reddy Polu , Faisal Islam Chowdhury , Pramod K. Singh , Markus Diantoro , Firdaus Mohamad Hamzah","doi":"10.1016/j.chphi.2024.100788","DOIUrl":"10.1016/j.chphi.2024.100788","url":null,"abstract":"<div><div>In this study, nanocomposite solid polymer electrolytes (NSPEs) based on poly(ethylene glycol) (PEG), potassium nitrate (KNO<sub>3</sub>), and titanium oxide (TiO<sub>2</sub>) nanoparticles were synthesized using a solution casting technique. The impact of various TiO<sub>2</sub> nanoparticle concentrations on the structural, thermal, electrical and electrochemical properties of the NSPEs was investigated. X-ray diffraction analysis revealed a decrease in the degree of crystallinity of the PEG–KNO<sub>3</sub> electrolyte upon the addition of TiO<sub>2</sub> nanoparticles. Differential scanning calorimetry measurements showed a decrease in the melting temperature of the NSPE with the incorporation of 6 wt.% TiO<sub>2</sub> nanoparticle concentration. The ionic conductivity of the NSPEs increased with TiO<sub>2</sub> concentration up to 6 wt.% (σ = 5.94 × 10<sup>−5</sup> S/cm), beyond which a decrease was observed. Transference number measurements confirmed the dominance of ionic charge transport in the NSPE. A solid-state electrochemical cell fabricated using the optimal NSPE composition (80PEG–20KNO<sub>3</sub>–6 wt.% TiO<sub>2</sub>) exhibited promising discharge performance under a constant load of 100 kΩ.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100788"},"PeriodicalIF":3.8,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142723651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring phytoconstituent for confronting the symptoms of polycystic ovarian syndrome: molecular dynamics simulation, quantum studies, free energy calculations and network analysis approaches","authors":"Pavithra Lakshmi Narayanan, Chitra Vellapandian","doi":"10.1016/j.chphi.2024.100787","DOIUrl":"10.1016/j.chphi.2024.100787","url":null,"abstract":"<div><div>Women of the current citizenry are majorly afflicted with gonadal hormonal fluctuations and stress, which play a predominant role in the occurrence and prevalence of PCOS. Synthetic medications under use influence in varietal adverse reactions, hence incorporation of herbs remains a critical part of the therapy. The present study includes selection of phytoconstituents from herbs related to uterine activity and subjection to <em>in silico</em> approach. The constituents were incorporated into a flow of molecular docking, ADMET analysis, toxicity, biological activity prediction, DFT studies, Molecular dynamics, free energy calculations, and network analysis. Three proteins namely Human androgen receptor (2AM9), Human progesterone (1E3K), and Estrogen receptor (1X7R) were selected and used throughout the study. From docking studies, Sarsasapogenin (SAR), β-sitosterol (BES), and Stigmasterol (STI) showed good binding energy interactions with all three proteins, and they also possess ideal drug-likeliness properties with acceptable toxicity profiles. Further analysis by Density functional theory proves they possess considerable intermolecular charge transfer. The insights from Molecular dynamics studies and free energy calculation explain, that Sarsasapogenin (SAR) among the three has strong stability and intermolecular interactions with the findings through network analysis justifying the selection of three proteins. Hence, on the compilation of results, Sarsasapogenin from <em>Asparagus racemosus</em> is determined to be potent and active with all three receptors together that majorly influence in the pathophysiology of the disorder. Further experimental evaluation of SAR in pre-clinical and clinical models would help emphasize the biological activity of the constituent in the management of PCOS.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100787"},"PeriodicalIF":3.8,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Huang , Xuefeng Xiao , Yan Zhang , Jiashun Si , Shuaijie Liang , Qingyan Xu , Huan Zhang , Lingling Ma , Cui Yang , Xuefeng Zhang , Jiayue Xu , Tian Tian , Hui Shen
{"title":"Optical properties of Gd3+ doped bismuth silicate crystals based on first principles","authors":"Yan Huang , Xuefeng Xiao , Yan Zhang , Jiashun Si , Shuaijie Liang , Qingyan Xu , Huan Zhang , Lingling Ma , Cui Yang , Xuefeng Zhang , Jiayue Xu , Tian Tian , Hui Shen","doi":"10.1016/j.chphi.2024.100783","DOIUrl":"10.1016/j.chphi.2024.100783","url":null,"abstract":"<div><div>Bismuth silicate (Bi<sub>4</sub>Si<sub>3</sub>O<sub>12</sub>, BSO) crystal, as a nonlinear optical material with excellent optical properties, has a wide range of applications in laser technology, optical communication, and optical information processing. In order to further improve its performance, this study adopts a first principles calculation method based on density functional theory (DFT), selects Gd<sup>3+</sup> as the dopant, and calculates and explores the changes in optical properties of BSO crystals after doping with 1/12, 1/6, and 1/3Gd<sup>3+</sup>. The calculation results show that the doping of Gd<sup>3+</sup> changes the electronic structure of BSO crystals, which is manifested in the emergence of new light absorption and emission characteristics, an increase in carrier concentration, an improvement in conductivity, and an enhancement of crystal polarization ability in optical properties. In addition, doping with Gd<sup>3+</sup> increases the light transmission rate and reduces energy loss of BSO crystals, while releasing more energy during electron band transitions, effectively improving the luminescence performance of BSO crystals. The theoretical research in this article provides an important theoretical basis for understanding the influence of Gd<sup>3+</sup> doping on the optical properties of BSO, and by optimizing the ratio of Gd<sup>3+</sup>, the optical properties of BSO can be further regulated, opening up new possibilities for its application in optoelectronic devices.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100783"},"PeriodicalIF":3.8,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142723293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Khakpour , Shamim Ghiabi , Ali Kazemi Babaheydari , Seyedeh Atefeh Mirahmadi , Payam Baziyar , Ehsan Heidari-Soureshjani , Mohammad Karami Horestani
{"title":"Discovering the therapeutic potential of Naringenin in diabetes related to GLUT-4 and its regulatory factors: A computational approach","authors":"Ali Khakpour , Shamim Ghiabi , Ali Kazemi Babaheydari , Seyedeh Atefeh Mirahmadi , Payam Baziyar , Ehsan Heidari-Soureshjani , Mohammad Karami Horestani","doi":"10.1016/j.chphi.2024.100784","DOIUrl":"10.1016/j.chphi.2024.100784","url":null,"abstract":"<div><div>This study explores the therapeutic potential of Naringenin, a natural flavonoid, in managing Type 2 Diabetes Mellitus (T2DM) by focusing on Glucose Transporter 4 (GLUT4) and related regulatory proteins that play a role in glucose and lipid metabolism. Through bioinformatics analysis, key proteins such as Carnitine palmitoyltransferase I, mitochondrial carnitine/acylcarnitine carrier protein, and PPARγ were identified, highlighting their importance in insulin sensitivity. Molecular docking results indicated that Naringenin has a strong binding affinity for GLUT4 and PPARγ, with binding energies of -8.18 kcal/mol and -8.21 kcal/mol, respectively. This suggests that Naringenin may modulate these proteins to enhance insulin sensitivity. In contrast, its weaker binding with Enhancer-Binding Protein Alpha points to Naringenin's selective efficacy among various targets. Molecular dynamics (MD) simulations conducted over 100 ns confirmed the stability of the GLUT4-Naringenin complex, showing a reduced RMSD of 1.25 nm and a more compact structure with a Radius of Gyration (Rg) value of 2.14 nm. However, Rho-related GTP exhibited increased instability upon Naringenin binding, indicating a potential inhibitory effect. Additionally, an in silico ADMET profile revealed Naringenin's favorable pharmacokinetics, including low hepatotoxicity, no mutagenic effects, and a high maximum tolerated dose, which supports its safety for drug development. In conclusion, Naringenin shows promising potential in enhancing glucose metabolism and insulin sensitivity, positioning it as a viable candidate for future preclinical and clinical studies in T2DM management. Future research should aim to validate these computational findings through experimental methods and investigate possible synergistic effects with existing antidiabetic medications to improve treatment outcomes.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100784"},"PeriodicalIF":3.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142723294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"First-principles investigations to evaluate FeN2 as an electrocatalyst to improve the performance of Li–S batteries","authors":"Liyuan Jiang, Bingqian Wang, Yulin Zhou, Yan Jiang, Zongyao Zhang, Zhengdao Li, Xinxin Zhao, Jianbao Wu","doi":"10.1016/j.chphi.2024.100785","DOIUrl":"10.1016/j.chphi.2024.100785","url":null,"abstract":"<div><div>The high energy density, low cost, and environmental sustainability of lithium-sulfur (Li–S) batteries render them highly promising as next-generation energy storage devices. Nevertheless, the commercial advancement of Li–S batteries faces obstacles, including the limited conductivity of sulfur, the shuttle effect of lithium polysulfides (LiPSs), and the suboptimal efficiency of the discharging/charging process. Based on the theoretical calculation of density functional, the potential application of an FeN<sub>2</sub> single-layer as a catalyst in Li–S batteries to overcome the abovementioned problems is studied. The results show that the FeN<sub>2</sub> single-layer molecules have a metal electron structure and soluble LiPSs can effectively coordinate and bond with FeN<sub>2</sub>. Improving the overall conductivity and anchoring effect of sulfur can effectively inhibit the shuttle effect caused by LiPSs. It is worth noting that the FeN<sub>2</sub> single-molecule membrane has dual functions, and it has electrocatalytic activity on both the sulfur reduction reaction and the Li<sub>2</sub>S decomposition reaction, thus improving the conversion efficiency of the discharging and charging processes. These findings may provide a reference for the development of high-performance Li–S batteries.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100785"},"PeriodicalIF":3.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Ashraful Hasan , Ismail M.M. Rahman , M. Rithoan Hossain , Faisal Islam Chowdhury
{"title":"Quantum chemical investigations into the structural and spectroscopic properties of choline chloride-based deep eutectic solvents","authors":"M. Ashraful Hasan , Ismail M.M. Rahman , M. Rithoan Hossain , Faisal Islam Chowdhury","doi":"10.1016/j.chphi.2024.100777","DOIUrl":"10.1016/j.chphi.2024.100777","url":null,"abstract":"<div><div>The chemical process industries are progressively embracing green technologies and sustainable waste management techniques due to growing environmental concerns and the impact of climate change. Deep eutectic solvents (DESs), formed by combining neutral molecules (e.g., choline chloride, ChCl) with hydrogen bond donors, have emerged as promising eco-friendly solvents with diverse applications in chemical, pharmaceutical, and separation processes. In this context, modern quantum-based research is focused on eutectic mixtures, particularly those formed by ChCl as a hydrogen bond acceptor with various hydrogen bond donors at specific mole ratios. The properties and validity of these DESs are investigated through density functional theory (DFT) analysis of their molecular dynamics simulations. This quantum computational approach offers valuable insights for designing the desired conductive liquids. Furthermore, the density of states analysis allows for studying the electronic structure and quantifying the number of states occupied per unit of energy. The quantum and vibrational properties of experimentally synthesized DESs are simulated using DFT B3LYP/6–31G(d,p). Current research aims to design and understand the properties of eutectic solvents to develop novel, environmentally benign alternatives for the chemical industry.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100777"},"PeriodicalIF":3.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subhrajit Konwar , Sushant Kumar , Ahmad Azmin Mohamad , Amrita Jain , Monika Michalska , Vinay Deep Punetha , M.Z.A. Yahya , Karol Strzałkowski , Diksha Singh , Markus Diantoro , Faisal Islam Chowdhury , Pramod K. Singh
{"title":"Ionic liquid (1-Ethyl-3-methylimidazolium tricyanomethanide) incorporated corn starch polymer electrolyte for solar cell and supercapacitor application","authors":"Subhrajit Konwar , Sushant Kumar , Ahmad Azmin Mohamad , Amrita Jain , Monika Michalska , Vinay Deep Punetha , M.Z.A. Yahya , Karol Strzałkowski , Diksha Singh , Markus Diantoro , Faisal Islam Chowdhury , Pramod K. Singh","doi":"10.1016/j.chphi.2024.100780","DOIUrl":"10.1016/j.chphi.2024.100780","url":null,"abstract":"<div><div>Taking into account energy demand a new highly conducting ionic liquid (IL) c (EmImTCM) mixed corn starch (CS) biopolymer electrolyte is synthesized for dual electrochemical application electric double layer capacitor (EDLC) and the dye-sensitized solar cell (DSSC) application. Electrical, structural, thermal, and optical studies are carried out in detail and presented in this communication. Maximum conducting IL-incorporated biopolymer electrolyte film has been sandwiched between electrodes to develop EDLC and DSSC. The sandwich-structured EDLC delivers a high specific capacitance of 250 F/gram while DSSC shows 1.44 % efficiency at one sun condition.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100780"},"PeriodicalIF":3.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K C Acharyulu Srinivasula , Vamsi Krishna Katta , S. Bharadwaj , BalajiRao Ravuri
{"title":"Na4+x[Sn1-xYxSi3.8P0.2O12]glass-ceramic electrolyte: Structure correlation with Interfacial resistance and electrochemical performance","authors":"K C Acharyulu Srinivasula , Vamsi Krishna Katta , S. Bharadwaj , BalajiRao Ravuri","doi":"10.1016/j.chphi.2024.100782","DOIUrl":"10.1016/j.chphi.2024.100782","url":null,"abstract":"<div><div>This investigation focuses on preparing glass and glass-ceramic Na<sub>4+x</sub>[Sn<sub>1-x</sub>Y<sub>x</sub>Si<sub>3.8</sub> P<sub>0.2</sub>O<sub>12</sub>; labeled as GC-NSY<sub>x</sub>] electrolytes with different molar percentages (<em>x</em> = 0, 0.2, 0.5, 0.7, and 1.0 mol%). The preparation done using melt quenching and subsequent heat treatments designed to enhance conductivity. The Rhombohedral Na<sub>5</sub>YSi<sub>4</sub>O<sub>12</sub> (ICSD-20271) phase, within the space group R3̅c, emerged as the most stable and effective ion-conducting phase. In particular, the best ion conducting G-NSY<sub>1.0</sub> glass electrolyte (σ<sub>b</sub> = 2.88 × 10<sup>–5</sup> S/cm) composition,further improved after heat treating it for 9 hours at its crystallization temperature (T<sub>c</sub>) (GC-NSY<sub>1.0</sub>-9h; ΔT = 156 °C; σ<sub>b</sub> = 4.89 × 10<sup>–4</sup> S/cm) with superior thermal stability. Interestingly, the similarity between E<sub>aτ</sub> and E<sub>aσ</sub>values indicates that both conductivity and relaxation mechanisms involve only ionic hopping. A full cell configuration using a NaMnO<sub>2</sub>: GC-NSY<sub>1.0</sub>-9h electrolyte with a Na–Sn alloy anode in a 7:3 ratio (GC-NSY<sub>1.0</sub>-9h electrolyte/anode) exhibited the lowest interfacial resistance of 145 ohms and achieved a specific capacity of 97 mAhg<sup>–1</sup>at 0.1C rate. This full cell also displayed excellent stability, irreversible capacity, and Coulombic efficiency (96 %) over 500 cycles which can be attributed to underlying oxidation and reduction reactions occurring during longer term cycling.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100782"},"PeriodicalIF":3.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anji Reddy Polu , Pramod K. Singh , Aseel A. Kareem , Shufeng Song , Serguei V. Savilov , M.Z.A. Yahya , Markus Diantoro , Firdaus Mohamad Hamzah , S.N.F. Yusuf , Faisal Islam Chowdhury
{"title":"Enhancing ionic conductivity, mechanical stability and electrochemical properties simultaneously by integrating POSS-PEG13.3 hybrid nanoparticles into PEO-NaClO4 solid polymer electrolytes","authors":"Anji Reddy Polu , Pramod K. Singh , Aseel A. Kareem , Shufeng Song , Serguei V. Savilov , M.Z.A. Yahya , Markus Diantoro , Firdaus Mohamad Hamzah , S.N.F. Yusuf , Faisal Islam Chowdhury","doi":"10.1016/j.chphi.2024.100778","DOIUrl":"10.1016/j.chphi.2024.100778","url":null,"abstract":"<div><div>The increasing global energy demand and environmental concerns necessitate the development of sustainable energy storage solutions. Sodium-ion batteries have emerged as a promising alternative to lithium-ion batteries due to the abundance and low cost of sodium. This study investigates the impact of incorporating hybrid nanoparticles, specifically polyhedral oligomeric silsesquioxane - poly(ethylene glycol) (POSS-PEG<sub>13.3</sub>), on the performance of polyethylene oxide (PEO) - sodium perchlorate (NaClO<sub>4</sub>) based solid polymer electrolytes (SPEs). The results demonstrate that the incorporation of POSS-PEG<sub>13.3</sub> effectively disrupts the crystallinity of the PEO matrix, as confirmed by X-ray diffraction and differential scanning calorimetry analyses. Consequently, the ionic conductivity of the SPEs increases with increasing POSS-PEG<sub>13.3</sub> content, reaching a maximum of 1.02 × 10<sup>–4</sup> S/cm at 30 °C for the electrolyte containing 40 wt.% of POSS-PEG<sub>13.3</sub>. Furthermore, the addition of POSS-PEG<sub>13.3</sub> significantly improves the mechanical properties of the SPEs, enhancing their stability and durability. The ionic transference number (t<sub>ion</sub> = 0.988) confirm that ions are the primary charge carriers in these electrolytes. Additionally, linear sweep voltammetry and battery discharge studies indicate a wide electrochemical stability window of 3.32 V, demonstrating the suitability of these SPEs for Na-ion battery applications.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100778"},"PeriodicalIF":3.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Manimozhi , T. Sumathi , Sreeja Saravanan , N. Dhachanamoorthi , M. Saravanakumar , Kaliyamurthy Jayaprakash
{"title":"Dual purpose of graphene decorated with Cu3SnS4 as a counter electrode for dye sensitized solar cells and degradation of tetracycline antibiotics","authors":"A. Manimozhi , T. Sumathi , Sreeja Saravanan , N. Dhachanamoorthi , M. Saravanakumar , Kaliyamurthy Jayaprakash","doi":"10.1016/j.chphi.2024.100779","DOIUrl":"10.1016/j.chphi.2024.100779","url":null,"abstract":"<div><div>This article describes the synthesis of a series of Cu<sub>3</sub>SnS<sub>4</sub>/graphene composites using a simple one-pot solvothermal technique. XRD, SEM, TEM, Raman, UV–visible absorption, PL, and N<sub>2</sub> adsorption-desorption isotherms characterised sample structure, morphology, optical characteristics, and porosity. XRD and TEM examinations show that Cu<sub>3</sub>SnS<sub>4</sub> has a tetragonal crsyalline structure with spherical nanoparticles of 30–35 nm equally distributed over graphene sheets.. The band gap was determined to be 3.35, 3.12, 2.92, and 2.63 eV for Cu<sub>3</sub>SnS<sub>4</sub>, CSSG1, CSSG2, and CSSG5 CEs, respectively. CSSG5 CEs exhibits strong SSA (117.5 m<sup>2</sup>/g and 36.4 nm) and PS, which are about 2.2 times higher than those of pure Cu<sub>3</sub>SnS<sub>4</sub> (52.3 m<sup>2</sup>/g and 13.4 nm). As a result, the DSSC equipped with Cu<sub>3</sub>SnS<sub>4</sub>/graphene (50 mg) nanocomposite CE achieved a power conversion efficiency (PCE) of 10.21 %, which was higher than that of using Cu<sub>3</sub>SnS<sub>4</sub> nanoparticles (4.22 %) and comparable to the 5.91 % obtained with pure Pt CE as a reference. The nanohybrid structure of catalyst-active Cu<sub>3</sub>SnS<sub>4</sub> nanoparticles established on electrically conducting 2D graphene sheets provides fast ion diffusion pathways, a large accessible surface area, and superb chemical and thermal stability, improving the electrode's performance. This research offers an alternative CE in non-Pt system materials and a better solution in other fields. Moreover, the CSSG5 sample showed high degradation percentage (95 %), rate constant (0.5612 min<sup>-1</sup>) and long-term stability towards tetracycline (TC) under visible light irradiation.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100779"},"PeriodicalIF":3.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}