Experimental and numerical insights into Co-doped ZnS buffer layers for high-efficiency solar cells

IF 4.3 Q2 CHEMISTRY, PHYSICAL
Abdelali Talbi, Yassine Khaaissa, Fadoua Mansouri, Outman El Khouja, Ahmed Rmili, Khalid Nouneh
{"title":"Experimental and numerical insights into Co-doped ZnS buffer layers for high-efficiency solar cells","authors":"Abdelali Talbi,&nbsp;Yassine Khaaissa,&nbsp;Fadoua Mansouri,&nbsp;Outman El Khouja,&nbsp;Ahmed Rmili,&nbsp;Khalid Nouneh","doi":"10.1016/j.chphi.2025.100942","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the influence of cobalt (Co) doping concentration on the structural, morphological, optical, and electrical properties of zinc sulfide (ZnS) thin films. Both undoped and Co-doped ZnS thin films were successfully deposited on glass substrates using an economical and scalable ultrasonic-assisted chemical vapor deposition (Mist CVD) technique at a substrate temperature of 450 °C. A comprehensive characterization was performed using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, UV–Vis spectrophotometry, and Hall effect measurements. To assess their device relevance, SCAPS-1D simulations were performed by incorporating ZnS:Co as buffer layers in thin-film solar cells. The results show that 4 % Co doping enhances the optoelectronic properties and achieves the highest simulated efficiency of 14.50 %. These findings demonstrate that controlled Co incorporation is a promising route for tailoring ZnS thin films toward efficient buffer layers in photovoltaic devices.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100942"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425001288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the influence of cobalt (Co) doping concentration on the structural, morphological, optical, and electrical properties of zinc sulfide (ZnS) thin films. Both undoped and Co-doped ZnS thin films were successfully deposited on glass substrates using an economical and scalable ultrasonic-assisted chemical vapor deposition (Mist CVD) technique at a substrate temperature of 450 °C. A comprehensive characterization was performed using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, UV–Vis spectrophotometry, and Hall effect measurements. To assess their device relevance, SCAPS-1D simulations were performed by incorporating ZnS:Co as buffer layers in thin-film solar cells. The results show that 4 % Co doping enhances the optoelectronic properties and achieves the highest simulated efficiency of 14.50 %. These findings demonstrate that controlled Co incorporation is a promising route for tailoring ZnS thin films toward efficient buffer layers in photovoltaic devices.

Abstract Image

高效太阳能电池共掺杂ZnS缓冲层的实验与数值研究
本研究探讨了钴(Co)掺杂浓度对硫化锌(ZnS)薄膜结构、形态、光学和电学性能的影响。采用经济、可扩展的超声辅助化学气相沉积(Mist CVD)技术,在450°C的衬底温度下成功地在玻璃衬底上沉积了未掺杂和共掺杂的ZnS薄膜。利用x射线衍射、拉曼光谱、扫描电子显微镜、原子力显微镜、紫外可见分光光度法和霍尔效应测量进行了全面的表征。为了评估其器件相关性,将ZnS:Co作为薄膜太阳能电池的缓冲层进行了SCAPS-1D模拟。结果表明,4%的Co掺杂提高了光电性能,达到了14.50%的最高模拟效率。这些发现表明,可控Co掺入是一种很有前途的途径,可以将ZnS薄膜定制为光伏器件中的高效缓冲层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信