C.S. Manikandababu , S. Navaneethan , M․Infant Shyam Kumar , S. Ramkumar , K. Muthukannan , P. Siva Karthik
{"title":"Construction of MoS2@RGO hybrid catalyst: An efficient and highly stable electrocatalyst for enhanced hydrogen generation reactions","authors":"C.S. Manikandababu , S. Navaneethan , M․Infant Shyam Kumar , S. Ramkumar , K. Muthukannan , P. Siva Karthik","doi":"10.1016/j.chphi.2025.100874","DOIUrl":"10.1016/j.chphi.2025.100874","url":null,"abstract":"<div><div>It has been hypothesized that molybdenum disulfide, also known as MoS<sub>2</sub>, is an attractive option for the synthesis of hydrogen with a high degree of efficiency. It is preferred to construct a hybrid based on MoS<sub>2</sub> in order to increase the catalytic efficiency, and it is vital to have a grasp of the nature of catalysis in order to make advances in this sector. In this paper, we use reduced graphene oxide, generally known as rGO, to create a MoS<sub>2</sub>@RGO hybrid catalyst with a number of favorable characteristics for the hydrogen evolution process (HER). The MoS<sub>2</sub>@RGO hybrids are next subjected to a battery of analytical tests, including TGA, XRD, TEM, XPS, Raman and BET. 1T MoS<sub>2</sub>@RGO hybrids demonstrated short Tafel slopes (46 and 52 mV.dec<sup>‑1</sup>) and low levels of overall (70 and 71 mV versus RHE) in both alkaline and acidic electrolytes, allowing for a high current density of 10 mA.cm<sup>2</sup>. The findings show that HER exists in flawed heterostructures. Because 1T phase molybdenum disulfide (MoS<sub>2</sub>) has more functional sites and a higher intrinsic permeability, it is responsible for the catalyst's outstanding HER efficiency. This paper presents a novel way for fabricating highly active and responsive HER catalysts, as well as a way that is both feasible and practical for fabricating defective-MoS<sub>2</sub>@RGO heterostructures.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100874"},"PeriodicalIF":3.8,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143820857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rania A. Hussien , Fatmah Ali S. Alasmary , Vijay H. Masand , Abdul Samad , Rahul D. Jawarkar , Gaurav S. Masand , Sami A. Al-Hussain , Magdi E.A. Zaki
{"title":"Identification of pharmacophore synergism for optimization of estrogen receptor beta binders for hormone dependent forms of breast cancer","authors":"Rania A. Hussien , Fatmah Ali S. Alasmary , Vijay H. Masand , Abdul Samad , Rahul D. Jawarkar , Gaurav S. Masand , Sami A. Al-Hussain , Magdi E.A. Zaki","doi":"10.1016/j.chphi.2025.100872","DOIUrl":"10.1016/j.chphi.2025.100872","url":null,"abstract":"<div><div>Certain forms of breast cancer, particularly influenced by estrogen hormone, prompt the investigation of estrogen receptors as potential targets for therapeutic interventions. The drug discovery pipeline against breast cancer requires the identification and retention of crucial pharmacophoric features of inhibitors using a multitude of inhibitors comprising diverse scaffolds. In the present study, our focus was on conducting an e-QSAR (easy, efficient, economical, ecofriendly, and explainable QSAR), molecular docking and molecular dynamics simulations analyses on a diverse range of inhibitors that target Estrogen Receptor beta. The newly developed QSAR model upholds a balance between predictive accuracy with R<sup>2</sup><sub>tr</sub> = 0.799, Q<sup>2</sup><sub>LMO</sub> = 0.792, and CCCex = 0.886 and also provides mechanistic insights, thus adhering to the guidelines set forth by the Organisation for Economic Co-operation and Development (OECD). The analyses reveal that atoms with sp<sup>2</sup>-hybridization, specifically carbon and nitrogen atoms, have a significant impact on the binding profile along with lipophilic atoms. Additionally, a specific combination of hydrogen bond donors and acceptors involving carbon, nitrogen, and ring sulfur atoms also plays a crucial role. These novel findings have the potential to greatly aid future drug development targeting estrogen receptor beta.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100872"},"PeriodicalIF":3.8,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143816875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three-step fabrication of TiO2CdS spheres on SiO2 supports for enhanced hydrogen evolution performance","authors":"Zhengyou Li, Alexander V. Soldatov, Aslam Hossain","doi":"10.1016/j.chphi.2025.100869","DOIUrl":"10.1016/j.chphi.2025.100869","url":null,"abstract":"<div><div>Development of novel, low-cost and efficient electrocatalysts for hydrogen evolution reaction (HER) is crucial for sustainable energy applications. In this study, a SiO<sub>2</sub>-supported TiO<sub>2<img></sub>CdS spherical composite is presented as a highly effective catalyst for enhanced hydrogen evolution performance. This composite material was synthesized through a three-step process of materials engineering. XRD analysis revealed reduced SiO<sub>2</sub> peak intensity (25°) while UV–vis data indicate a narrowed bandgap (from 2.63 eV to 2.11 eV) with CdS incorporation, confirming surface modification and visible-light responsiveness. FTIR identified Ti–O–Cd interactions and O–H bending vibrations, while TEM imaging demonstrated uniform SiO<sub>2</sub> spheres (200–250 nm) with dense CdS coverage, corroborating successful hierarchical integration. Finally, electrochemical measurements were performed to evaluate the material's electrocatalytic HER performance. The overpotential exhibited a notable decrease from 793 mV to 264 mV at a current density of 10 mA/cm², demonstrating the improved electrocatalytic efficiency as CdS concentration increased. Furthermore, Tafel slope analysis revealed enhanced hydrogen evolution kinetics, with the slope reducing from 189 to 127 mV/dec as CdS content increased. Electrochemical impedance spectroscopy (EIS) results revealed semicircular Nyquist plots for all samples, with the highest CdS-containing sample showing a smaller semicircle, indicating a substantial reduction in charge transfer resistance.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100869"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143783588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficiency enhancement of DSSCs based on sol-gel prepared ZnO nanoparticles through cosensitization with natural and synthetic pigments","authors":"Vahdat Rafee , Alireza Razeghizadeh , Forough Yazdizadeh , Roohollah Nakhaei","doi":"10.1016/j.chphi.2025.100868","DOIUrl":"10.1016/j.chphi.2025.100868","url":null,"abstract":"<div><div>This study explores the effect of co-sensitizing dye-sensitized solar cells (DSSCs) based on ZnO nanoparticles with natural pigments from Nerium (oleander) and Ziziphus jujuba (jujube) fruit peel, alongside the synthetic pigment N719, to enhance efficiency. ZnO nanoparticles were synthesized via the sol-gel method, and five DSSC samples (DS1-DS5) were fabricated using the Doctor Blade technique. These were sensitized with: (1) jujube extract (D1), (2) Nerium extract (D2), (3) N719 (D3), (4) a blend of D1 and D2 (D4), and (5) a co-sensitized mix of D1, D2, and N719 (D5) in a 1:1:2 ratio. Structural and optical properties were characterized using FE-SEM, XRD, and UV–Vis spectroscopy, while photovoltaic performance was evaluated with a solar simulator. Results revealed that DS5, co-sensitized with all three pigments, exhibited the broadest absorption spectrum (200–600 nm) and the highest efficiency (3.28 %), attributed to enhanced light harvesting and electron transfer. The ZnO films showed a uniform, porous structure with an average nanoparticle size of 42.16 nm. This co-sensitization approach, combining low-cost natural dyes with N719, offers an eco-friendly and efficient strategy for improving DSSC performance.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100868"},"PeriodicalIF":3.8,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143746731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Red emission in MoO3:Eu3+ nanobelts: Investigation on the photoluminescence quenching mechanism","authors":"A V Avani, Chrisma Rose Babu, E I Anila","doi":"10.1016/j.chphi.2025.100867","DOIUrl":"10.1016/j.chphi.2025.100867","url":null,"abstract":"<div><div>MoO<sub>3</sub>:Eu<sup>3+</sup> nanobelts were synthesized via the hydrothermal method with varying concentrations of europium doping. The investigation has examined the structural, morphological, optical, and photoluminescence characteristics of MoO<sub>3</sub>:Eu<sup>3+</sup> nanophosphors. The XRD and Raman spectroscopy affirmed the orthorhombic structure of the synthesized nanostructures. FESEM depicts a nanobelt-like morphology and XPS studies confirmed the presence of Eu<sup>3+</sup>. A detailed analysis of the photoluminescence mechanism, concentration quenching, and quantum efficiency is presented in this study. Upon 302 nm excitation, red emission was observed along with concentration quenching effects. The optimized sample with the highest PL intensity (MoO<sub>3</sub>:Eu<sup>3+</sup> 3 mol. %) was annealed at 600 °C for 12 hrs. The PL intensity increased upon annealing, with the corresponding CIE coordinates (0.52, 0.29). The findings highlight the material's potential for use in display technologies and bioimaging phosphors.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100867"},"PeriodicalIF":3.8,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143746616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved photocatalytic performance of Ce substituted lanthanum ferrite nanoparticles for the degradation of harmful antibiotic tetracycline from water","authors":"S. Adline Benila , V. Anslin Ferby , P. Sakthivel","doi":"10.1016/j.chphi.2025.100866","DOIUrl":"10.1016/j.chphi.2025.100866","url":null,"abstract":"<div><div>Antibiotics, a widely used pharmaceutical, directly endanger aquatic environment and human health, when discharged into water bodies from pharmaceutical industries, hospitals and breeding farms. To address this issue, several semiconductor materials are employed as photocatalysts to degrade antibiotics effectively. The present study focuses on the synthesis of Ce-substituted lanthanum ferrites in different compositions [La<sub>1-x</sub>Ce<sub>x</sub>FeO<sub>3</sub> (<em>x</em> = 0.0, 0.1, 0.2, 0.3)] by hydrothermal method for the effective degradation of tetracycline. The structural, morphological, compositional and optical properties of prepared photocatalysts were characterised by X-ray Diffraction, Fourier transform infrared spectroscopy, High-resolution scanning electron microscopy, High-resolution transmission electron microscopy, Energy dispersive X-ray spectroscopy and Ultraviolet diffuse reflectance spectroscopy respectively. XRD validated the orthorhombic crystal structure of nanoparticles in the <em>Pbnm</em>space groupwith the reduction of average crystallite size from 32.74 to 24.97 nm upon Ce substitution. FTIR verified the presence of the distinctive Fe-O bond. The morphological study also revealed that the materials were porous. The samples were identified as visible-light-driven photocatalysts, with the reduction of optical band gap from 2.24 to 1.88 eV with increasing Ce concentration. The role of visible light exposure on synthesized nanoparticles was studied. Bare lanthanum ferrite degraded only 56 % of tetracycline. However, cerium-substituted lanthanum ferrite nanoparticles have shown maximum degradation of 91 %. The estimated degradation rate constant of La<sub>0.8</sub>Ce<sub>0.2</sub>FeO<sub>3</sub> was found to be 3 times greater than the bare sample and follows pseudo-first order kinetics.The main active species involved in degradation was identified as superoxide radicals. Reusability studies confirmed the structural chemical stability of the samples over multiple degradation cycles, rendering its usage as efficient photocatalyst in wastewater treatment systems for the degradation of tetracycline.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100866"},"PeriodicalIF":3.8,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Shejini , V. Sabarinathan , K. Sethuraman , K. Mohanraj , J. Henry , G. Sivakumar
{"title":"Hydrothermally prepared Ag2MoO4 nanoparticles anchored on nitrogen doped rGO for asymmetric supercapacitor application","authors":"R. Shejini , V. Sabarinathan , K. Sethuraman , K. Mohanraj , J. Henry , G. Sivakumar","doi":"10.1016/j.chphi.2025.100863","DOIUrl":"10.1016/j.chphi.2025.100863","url":null,"abstract":"<div><div>The energy density and the specific capacitance are two important parameters for improving energy storage devices. In this study, we introduce the novel incorporation of nitrogen-doped reduced graphene oxide (NRGO) into Ag<sub>2</sub>MoO<sub>4</sub> nanoparticles, for use in asymmetric supercapacitor applications. The synthesized compounds were confirmed and characterized using structural, functional, nitrogen adsorption-desorption, surface, elemental analyses, and electrochemical properties. Here, the AMO<img>NRGO composite materials exhibited the pebble stone-like structure of Ag<sub>2</sub>MoO<sub>4</sub> on the NRGO surface, observed by FESEM techniques. At 1 Ag<sup>-1</sup>, the Ni foam coated with the AMO<img>NRGO (II) nanocomposite demonstrates a good C<sub>sp</sub> of 648 Fg<sup>-1</sup>. It displayed retention of 91 % of its initial capacitance over 5000 charge/discharge cycles. In an asymmetric supercapacitor (ASC) device, the electrodes of AMO<img>NRGO (II) || AC demonstrated an exceptional energy density (E<sub>d</sub>) of 44.13 Whkg<sup>-1</sup> at a discharge rate (597.79 Wkg<sup>-1</sup>). The results suggest that the AMO<img>NRGO electrodes exhibit promising electrochemical performance for the supercapacitor application.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100863"},"PeriodicalIF":3.8,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143684837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of π-linkers in Triphenylamine-EDOT based dye sensitizers for DSSCs: A DFT approach","authors":"Pooja Kundu, Prabhakar Chetti","doi":"10.1016/j.chphi.2025.100865","DOIUrl":"10.1016/j.chphi.2025.100865","url":null,"abstract":"<div><div>In this study, organic molecules with various π-linkers having triphenylamine (TPA) donor core and 3,4-ethylenedioxythiophene (EDOT) as internal acceptor in conjugation with cyanoacrylic acid (CAA) anchoring group on the photovoltaic performance were systematically investigated. The charge transportability, stability, and optical characteristics was estimated using density functional theory (DFT) technique. The molecules exhibited wide absorption spectra ranges 370–480 nm with a noticeable trend towards longer wavelengths, accompanied by low excitation energies. The HOMO (H), LUMO (L), HOMO-LUMO energy gap (∆E<sub>g</sub>), ionization potential (IP), electron affinity (EA), reorganization energy are assisted for consideration of suitable energy levels for charge transfer, electron injection, dye regeneration. The impact of π-linkers on the efficacy of DSSCs was determined by scrutinizing necessary photovoltaic parameters like J<sub>SC</sub>, ΔG<sub>reg</sub>, ΔG<sub>inj</sub>, LHE, V<sub>OC</sub>, DOS and power conversion efficiency. The dye (<strong>NH</strong>) with pyrrole π-linker influences the absorption energies for achieving high-efficiency (7.49 %) for solar cell and provide valuable insights into the configuration relationship of organic sensitizers. These findings highlight the potential of reported dye molecules that can exhibit enhanced electronic characteristics has broadened possibilities for the optimization of their photovoltaic properties and are better sensitizers for the assembly of dye sensitized solar cells (DSSCs).</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100865"},"PeriodicalIF":3.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143725773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of Metal-Organic Frameworks (MOFs): Synthesis, Properties, and Applications - An In-Depth Review","authors":"Fatima zohra Zeggai , Zouhair Ait-Touchente , Khaldoun Bachari , Abdelhamid Elaissari","doi":"10.1016/j.chphi.2025.100864","DOIUrl":"10.1016/j.chphi.2025.100864","url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) are a novel category of crystalline porous hybrid materials that may be precisely adjusted regarding their structure, porosity, and functionality. Their extensive surface area, meticulously engineered pore structures, and diverse synthesis techniques—such as hydrothermal, microwave, electrochemical, and mechanochemical methods—position them prominently for applications in energy storage, gas separation, environmental remediation, and catalysis. Nonetheless, issues like inadequate photocatalytic effectiveness, suboptimal electronic conductivity, and structural instability hinder their large-scale application. Innovative techniques such as heteroatom doping, defect engineering, and the creation of hybrid composites have resulted in significant advancements. For instance, Ti-doped MOFs show a 40% increase in photocatalytic hydrogen evolution, while Ni-MOF composites that conduct electricity show a fivefold increase. This essay looks in depth at MOF synthesis, structure-property relationships, and new ways to make things work better. It also shows possible future research paths, such as making MOFs that can do more than one thing, bioinspired frameworks, and AI-enhanced MOF designs, to get around current problems and find new uses for MOFs in the future.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100864"},"PeriodicalIF":3.8,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143684836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel ceramic Gd3M2Al3O12: M=Ce+3, Fe+3:Optical properties and potential applications","authors":"Dewasthali Tejaswi Ramchandra, Suman Rani","doi":"10.1016/j.chphi.2025.100861","DOIUrl":"10.1016/j.chphi.2025.100861","url":null,"abstract":"<div><div>Garnets are becoming popular for improving photonic device efficiency due to their chemical and physical stability, making them ideal for electronics, optics, and material science. This work studies the structural and optical properties of Gd<sub>3</sub>Ce<sub>2</sub>Al<sub>3</sub>O<sub>12</sub> (GCAG) and Gd<sub>3</sub>Fe<sub>2</sub>Al<sub>3</sub>O<sub>12</sub> (GFAG), synthesized using the sol-gel method, with sintering at 1100 °C for GCAG and 950 °C for GFAG. FESEM and FTIR spectroscopy were used to analyze phase composition and microstructure. UV–Vis spectroscopy revealed a band gap of 3.73 eV for GCAG and 2.63 eV for GFAG. Both GCAG and GFAG exhibit multicolor emission in their Down Conversion (DC) emission spectra, highlighting their intriguing optical properties.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100861"},"PeriodicalIF":3.8,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143684838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}