Khairul Anwar Mohamad Said , M.P.M. Subasinghe , Md Rezaur Rahman , Ibrahim Yakub , Sinin Hamdan
{"title":"Magnetic driven particle migration in PES membrane for phenol adsorption study: Isotherm and kinetic model perspective","authors":"Khairul Anwar Mohamad Said , M.P.M. Subasinghe , Md Rezaur Rahman , Ibrahim Yakub , Sinin Hamdan","doi":"10.1016/j.chphi.2024.100766","DOIUrl":"10.1016/j.chphi.2024.100766","url":null,"abstract":"<div><div>Particle migration within the membrane was induced by magnetic exposure. For investigating the effect of magnetic on membrane structure, the adsorbent composition was varied between 3, 12, and 30wt%. The migrated zinc ferrite will accumulate near the membrane surface, and through different zinc ferrite compositions, the membrane structure is affected based on microscopy imaging. The phenol adsorption performance was conducted at different phenol concentrations; 5, 13, 30, 40, and 50 mg/L. Adsorption study reveals that initial concentration has influenced the phenol removal and can be ranked as follows (to the left has higher removal): 5>30>50>40>13 mg/L. Different zinc ferrite composition shows that the higher the ZnFe wt%, the better the phenol removal and listed as follows(to the left has higher removal): 3>12>30 wt%. The isotherm model discloses a high adsorption rate for normal membrane, although a similar number of adsorption sites (∼1 site) were utilized throughout the adsorption test. The kinetic model reveals that the magnetic induce membrane has a higher maximum adsorption capacity, a thin saturated monolayer with thrice more adsorption.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100766"},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Md. Jahidul Islam, Nashin Sayara (Lecturer), Tasnia Talukder (Lecturer), Mohammad Harun-Ur-Rashid (Associate Professor)
{"title":"Trapping light, revealing properties: Laser trapping as a powerful tool for photoluminescence spectroscopy","authors":"Dr. Md. Jahidul Islam, Nashin Sayara (Lecturer), Tasnia Talukder (Lecturer), Mohammad Harun-Ur-Rashid (Associate Professor)","doi":"10.1016/j.chphi.2024.100764","DOIUrl":"10.1016/j.chphi.2024.100764","url":null,"abstract":"<div><div>Laser trapping, a non-contact technique for manipulating microscopic objects, has gained prominence in scientific research. When coupled with fluorescence spectroscopy, it offers a powerful tool for exploring material properties. This study demonstrates the application of laser trapping in the crystallization of MAPbBr<sub>3</sub> perovskites and its simultaneous use for photoluminescence imaging. MAPbBr<sub>3</sub> perovskites are a class of materials with exceptional optical properties, making them attractive for various optoelectronic applications. However, conventional excitation methods using UV light can lead to phase segregation and mechanical distortion of these materials. Two-photon excitation, on the other hand, offers advantages such as deeper penetration and reduced scattering interference. In this research, we utilize a 1064 nm continuous wave laser for both trapping and excitation purposes. The MAPbBr<sub>3</sub> perovskite, with its absorption band ranging from 400 to 540 nm, exhibits two-photon excitation at 532 nm. By focusing the laser beam at the air-solution interface, we successfully crystallize MAPbBr<sub>3</sub> perovskites from an unsaturated precursor solution. Simultaneously, the same laser source is used for photoluminescence imaging, allowing for real-time analysis of the crystal's emission properties. This approach eliminates the need for additional excitation sources and simplifies the experimental setup. The combination of laser trapping and two-photon excitation opens up new possibilities for studying perovskite materials. It provides a gentle and non-invasive method for manipulating and characterizing hybrid perovskites materials, paving the way for advancements in various fields such as optoelectronics and energy harvesting.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100764"},"PeriodicalIF":3.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sphelele C. Sosibo , Hendrik G. Kruger , Wonder P. Nxumalo , Zimbili Zondi
{"title":"Evaluation of Taraxacum officinale phytoconstituents as potential JNK1 inhibitors: Perspectives from ADMET, molecular docking, molecular dynamics, and density functional theory","authors":"Sphelele C. Sosibo , Hendrik G. Kruger , Wonder P. Nxumalo , Zimbili Zondi","doi":"10.1016/j.chphi.2024.100757","DOIUrl":"10.1016/j.chphi.2024.100757","url":null,"abstract":"<div><div>The impact of activated c-Jun N-terminal kinase isoform JNK1 chemical pathways in insulin biosynthesis poses a potential health risk of glucose intolerance. Blocking the activity of JNK1 is a promising route for the design of anti-diabetic drugs and associated metabolic syndromes. In this study, 17 extracts of <em>Taraxacum officinale</em> were chosen to bind JNK1 and ascertain their modulatory activity. We employed molecular dynamics, density functional theory and three docking approaches: standard precision, extra precision and quantum polarized ligand docking. The best binding free energy results were obtained from the quantum polarized ligand docking, with myricetin (1) showing a docking score of -10.464 kcal/mol, while quercetin (2) and daphnetin (3) displayed values of -9.769 and -7.136 kcal/mol respectively. Following this, 100 ns molecular dynamics simulations with Desmond showed stabilization average root mean square deviations of 2.34, 2.87, and 2.88 Å for myricetin, quercetin and daphnetin. Further, molecular dynamics revealed complexes of myricetin (ΔG = -38.81 kcal/mol) and quercetin (ΔG = -34.99 kcal/mol) as the most stable inside the JNK1 interface. The energy gaps for myricetin, quercetin and daphnetin were estimated to be 6.17, 6.00 and 6.53 eV employing the M06–2X functional in PCM solvation. Further, myricetin showed the strongest intramolecular hydrogen bonding with -13.06 kcal/mol. This study provides insights into possible anti-type-2 diabetes properties of <em>Taraxacum officinale</em> targeting JNK1.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100757"},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanmugam K.S , Ramkumar Lakshmanan , Jagadeesan R , Maghimaa M , Hemapriya N , S. Suresh
{"title":"Green synthesis of bimetallic Ag-ZnO nanocomposite using polyherbal extract for antibacterial and anti-inflammatory activity","authors":"Shanmugam K.S , Ramkumar Lakshmanan , Jagadeesan R , Maghimaa M , Hemapriya N , S. Suresh","doi":"10.1016/j.chphi.2024.100763","DOIUrl":"10.1016/j.chphi.2024.100763","url":null,"abstract":"<div><div>The current research has involved to develop nanoparticles (NPs) of zinc oxide (ZnO) doped with silver (Ag) through an eco-friendly method. <em>Eclipta prostrate</em> (EP)<em>, Eclipta alba</em> (EA), and <em>Tridax procumbans</em> (TP) are subjected to Soxhlet extraction using ethyl acetate. Alkaloids, flavonoids, and phenols were quantified using standard methods. Polyherbal extract was used to synthesize silver-zinc oxide nanocomposites (Ag-ZnO NCs) via the sol-gel method. The reduction of metal ions was confirmed by UV–visible spectroscopy, scanning electron microscopy, and thermogravimetric analysis. Polyherbal plants are found to have higher concentrations of phenols, flavonoids, and alkaloids than indigenous plants. Ag-ZnO NCs functional group has been identified using Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy. UV–vis spectroscopy revealed the surface plasmon resonance (SPR) of silver nanoparticles at 463–477 nm and zinc oxide nanoparticles at 266–267 nm. For Ag-ZnO NCs, the SPR peak was observed at 450 nm. Scanning electron microscopy confirmed the spherical morphology of the Ag-ZnO NCs. The anti-microbial activity of the formulated Ag-ZnO NCs was more effective than the extract against all tested pathogens. The most effective antimicrobial activities are achieved for Ag-ZnO NCs at 50 µg and 200 µg for extract. Biosynthesized nanoparticles exhibit a significant anti-inflammatory effect of 68% at a low concentration of 500 µg/mL, greater than the efficacy of diclofenac sodium. Additionally, the synthesized Ag-ZnO nanoparticle demonstrated its stability for 90 days and showed strong antimicrobial properties.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100763"},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green synthesis of Tacrine modified Schiff bases as anti-Alzheimer Agents: An effective strategy validated through in-silico and in-vitro analysis","authors":"Presenjit , Shubhra Chaturvedi , Akanksha , Deepika Sharma , Ritika Chaudhary , Prachi Verma , Ankita Singh , Kaman Singh","doi":"10.1016/j.chphi.2024.100759","DOIUrl":"10.1016/j.chphi.2024.100759","url":null,"abstract":"<div><div>A variety of Tacrine-modified Schiff base analogues were developed via solvent free (green) method and structurally elucidated using 1H<img>NMR, FTIR and UV–Vis analysis. High product yield was obtained from the synthesised molecules, which were produced efficiently at room temperature without the need of a solvent. The developed molecules were subsequently assessed for their potential to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). These molecules revealed effective inhibition of AChE and BChE enzymes with IC<sub>50</sub> values varying from 0.1 ± 0.02 to 0.3 ± 0.03 μM and 0.065 ± 0.01 to 0.3 ± 0.03 μM respectively. Compared to the standard Tacrine which has IC<sub>50</sub> values of 0.35 ± 0.02 μM for AChE and 0.1 ± 0.01 μM for BChE. Notably, compound 3f showed strong inhibition among others for both the enzymes. The structure–activity relationship of derivatives synthesized were verified and established through molecular docking studies. Theoretical ADME studies also predicted excellent drug-likeness for all the synthesized molecules. Antioxidant activities were also assessed because elevated oxidative stress levels are linked with cognitive loss in Alzheimer's disease (AD). These findings suggest that the lead compound is potentially an effective inhibitor for the therapeutic management of AD.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100759"},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chika Iwuji , Hritaal Saha , William Ghann , Dominique Dotson , Md. Anwarul Kabir Bhuiya , Md. Shahnawaz Parvez , ZMG Sarwar Jahangir , Mohammed Muzibur Rahman , Faisal Islam Chowdhury , Jamal Uddin
{"title":"Synthesis and characterization of silver nanoparticles and their promising antimicrobial effects","authors":"Chika Iwuji , Hritaal Saha , William Ghann , Dominique Dotson , Md. Anwarul Kabir Bhuiya , Md. Shahnawaz Parvez , ZMG Sarwar Jahangir , Mohammed Muzibur Rahman , Faisal Islam Chowdhury , Jamal Uddin","doi":"10.1016/j.chphi.2024.100758","DOIUrl":"10.1016/j.chphi.2024.100758","url":null,"abstract":"<div><div>Silver nanoparticles have garnered significant interest due to their unique properties, such as small size, high specific surface area, and high reactivity, making them valuable in various industries, including medicine, healthcare, consumer products, and food. The synthesis of silver nanoparticles has been extensively studied, with numerous methods reported, including physical, chemical, and biological routes. These synthesis methods can influence the antibacterial properties of silver nanoparticles, which is critical in hospital settings where pathogen exposure and antibiotic resistance are prevalent concerns. Notably, hospital environments face high infection risks from pathogens like Staphylococcus aureus and Pseudomonas aeruginosa, necessitating new antibacterial agents. This study aims to evaluate the antibacterial effects of synthesized silver nanoparticles against the pathogenic microorganisms S. aureus, P. aeruginosa, and Escherichia coli. The Silver nanoparticles were characterized using UV–vis spectroscopy, Dynamic Light Scattering (DLS), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). The nanoparticles had an average size of 52 nm and exhibited an absorption peak at 430 nm. Both S. aureus and P. aeruginosa demonstrated zones of inhibition when exposed to the silver nanoparticles, indicating their potent antibacterial activity. This study highlights the potential of silver nanoparticles as effective antibacterial agents in the healthcare industry, particularly in combating hospital-acquired infections.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100758"},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roshana T. Maske , A.N. Yerpude , Rupesh S. Wandhare , Vibha Chopra , S.J. Dhoble
{"title":"Structural, morphological and photoluminescence studies of Ca7Mg2P6O24:RE3+(RE3+= Tb3+, Dy3+) nanophosphor for solid state illumination","authors":"Roshana T. Maske , A.N. Yerpude , Rupesh S. Wandhare , Vibha Chopra , S.J. Dhoble","doi":"10.1016/j.chphi.2024.100760","DOIUrl":"10.1016/j.chphi.2024.100760","url":null,"abstract":"<div><div>The Ca<sub>7</sub>Mg<sub>2</sub>P<sub>6</sub>O<sub>24</sub>:RE<sup>3+</sup> (RE<sup>3+</sup>= Tb<sup>3+</sup>, Dy<sup>3+</sup>) nanophosphor material was synthesized by traditional wet chemical method. The XRD are used to determine phase and crystallinity of the synthesized sample; further FTIR, SEM, TEM, and PL properties were studied. The XRD pattern of prepared sample match well with standard JCPDS card no 00–020–0348, and it exhibits the rhombohedral structure along with space group R3c (161). The phosphate (PO<sub>4</sub>)<sup>3-</sup>group absorption band was observed at 990–1100 cm<sup>-1</sup> in FTIR. Surface morphology (TEM analysis) reveals particle sizes in the range of 55–110 nm. The luminescence emission spectra of Ca<sub>7</sub>Mg<sub>2</sub>P<sub>6</sub>O<sub>24</sub> phosphor activated by Tb<sup>3+</sup> were studied at three different excitations: 352 nm, 370 nm, and 379 nm. The spectra show two emission peaks at 470 nm (blue) and 545 nm (green). These are due to the <sup>5</sup>D<sub>4</sub> → <sup>7</sup>F<sub>6</sub> and <sup>5</sup>D<sub>4</sub> → <sup>7</sup>F<sub>5</sub> transitions of Tb<sup>3+</sup> ions. The highest intensity peak is located at 545 nm. The Ca<sub>7</sub>Mg<sub>2</sub>P<sub>6</sub>O<sub>24</sub>:Tb<sup>3+</sup> phosphor's CIE chromaticity coordinates are (0.040, 0.316) at 491 nm and (0.265, 0.724) at 543 nm. These are in the blue and green areas on the edges of the CIE diagram, respectively. The photoluminescence emission spectra of Dy<sup>3+</sup>-doped Ca<sub>7</sub>Mg<sub>2</sub>P<sub>6</sub>O<sub>24</sub> phosphor show two significant emission peaks located at 482 nm and 574 nm. These are caused by the <sup>4</sup>F<sub>9/2</sub> → <sup>5</sup>H<sub>15/2</sub> and <sup>4</sup>F<sub>9/2</sub> → <sup>6</sup>H<sub>13/2</sub> transitions of Dy<sup>3+</sup> ions, which produce blue and yellow light, respectively, with an excitation wavelength of 350 nm. The sharp peak position at 482 nm produces the strongest emission. The effect of concentration quenching in between the Dy<sup>3+</sup>-Dy<sup>3+</sup>ions and Tb<sup>3+</sup>-Tb<sup>3+</sup> ions is due to dipole-dipole interaction. The CIE color coordinate is found to be (0.082, 0.156) at 482 nm and (0.471, 0.527) at 574 nm which lies in blue and yellow border of CIE diagram. The lifespan of Tb<sup>3+</sup>, Dy<sup>3+</sup>activated Ca<sub>7</sub>Mg<sub>2</sub>P<sub>6</sub>O<sub>24</sub> nanophosphor of highest concentration is found to be 1.917 ms and 0.9985 ms respectively. On investigation, the synthesized Tb<sup>3+</sup>, Dy<sup>3+</sup>activated Ca<sub>7</sub>Mg<sub>2</sub>P<sub>6</sub>O<sub>24</sub> nanophosphor can be potential for solid lightning devices & other display application.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100760"},"PeriodicalIF":3.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A molecular dynamics investigation into the inhibitory function of hydroxypropyl-beta-cyclodextrin (HPBCD) in its interaction with amyloid-beta (Aβ) plaques near the cell membrane in the context of Alzheimer's disease.","authors":"Morteza Rezaeisadat , Azam Alizadeh , Elahe Shahryari","doi":"10.1016/j.chphi.2024.100755","DOIUrl":"10.1016/j.chphi.2024.100755","url":null,"abstract":"<div><div>Although Alzheimer`s disease has been known for a long time, it is interesting that scientists are still doing widespread research on it. Meanwhile, in parallel with experimental research, computational research is also yielding interesting results. In this study, we investigated the inhibitory behavior of hydroxypropyl-beta-cyclodextrin (HPBCD) drug candidates, which are more soluble than beta-cyclodextrin (BCD), using molecular dynamics simulations and compared them with AC0107 new drug. Parameters such as cell membrane stability, protein stability, drug inhibition rate, protein permeability, hydrogen bonding agents, the study of the energy content of interactions between different groups, and interactions between different species were of interest. The outcomes indicate that the drug candidate HPBCD has a role in inhibiting protein membrane penetration and has better performance than new AC0107 drug. In other words, HPBCD not only act as a drug carrier of Alzheimer's disease, but also as an inhibitor of it and can play a double role in its improvement.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100755"},"PeriodicalIF":3.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rahul D. Jawarkar , Anam Khan , Suraj N. Mali , Prashant K. Deshmukh , Rahul G. Ingle , Sami A Al-Hussain , Aamal A. Al-Mutairi , Magdi E.A. Zaki
{"title":"Cheminformatics-driven prediction of BACE-1 inhibitors: Affinity and molecular mechanism exploration","authors":"Rahul D. Jawarkar , Anam Khan , Suraj N. Mali , Prashant K. Deshmukh , Rahul G. Ingle , Sami A Al-Hussain , Aamal A. Al-Mutairi , Magdi E.A. Zaki","doi":"10.1016/j.chphi.2024.100754","DOIUrl":"10.1016/j.chphi.2024.100754","url":null,"abstract":"<div><div>The β-secretase, sometimes referred to as BACE1 or Asp2, is the enzyme responsible for initiating the production of Aβ by breaking down the amyloid precursor protein. Hence, BACE is a pivotal target for pharmacological intervention aimed at diminishing the production of Aβ in Alzheimer's disease (AD). We did a quantitative structure-activity relationship (QSAR) study on 1235 compounds that had been experimentally reported as BACE-1 inhibitors (Ki) to find the target molecule and structural patterns linked to blocking the BACE-1 receptor. The OECD-recommended genetic algorithm-multiple linear regression (GA-MLR) QSAR model strikes a good balance between being able to make accurate predictions and understanding how things work. It achieves high values for many evaluation metrics, including R2tr = 0.8047, Q<sup>2</sup>LMO = 0.802, R<sup>2</sup>ex = 0.805, CCCex = 0.891, Q<sup>2</sup>-F1=0.801, Q<sup>2</sup>-F2=0.799, and Q<sup>2</sup>-F3=0.815. The mechanistic interpretation of QSAR has identified some nitrogen atoms that are required to block beta-secretase and make it less effective at doing its job. A positively charged aromatic carbon atom has a more significant impact on beta-secretase-1 inhibition. The docking study showed that the catalytic dye residues Asp32 and Asp228 become protonated when compound 27 is present, but they stay unprotonated when compound 27 is not present. These rings of pyrazine and pyridine interact hydrophobically with Tyr71 and Ile118 residues, confirming the pharmacophoric features seen in the QSAR data. We examined the stability of both the protein-ligand complex and the apo-protein. The apoprotein had an average gyration radius of 22.13, whereas the protein-ligand complex had an average gyration radius of 22.91. No changes were made to the results from the molecular docking, molecular dynamics (MD) simulation, MMGBSA (Molecular Mechanics Generalized Born Surface Area), or DFT analyses. Therefore, the current work could effectively contribute to the future development of BACE inhibitors in medication design.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100754"},"PeriodicalIF":3.8,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elias Ghaleh Golab , Reza Ghamarpoor , Fereshteh Jafari Kondori , Seyednooroldin Hosseini , Hasan N. Al-Saedi
{"title":"Synthesis of hydrophobic polymeric surfactant (Polyacrylamide/Zwitterionic) and its effect on enhanced oil recovery (EOR)","authors":"Elias Ghaleh Golab , Reza Ghamarpoor , Fereshteh Jafari Kondori , Seyednooroldin Hosseini , Hasan N. Al-Saedi","doi":"10.1016/j.chphi.2024.100756","DOIUrl":"10.1016/j.chphi.2024.100756","url":null,"abstract":"<div><div>Injection of surfactant and polymer at the same time is one of the challenges that reduce their performance in reservoirs. Using a polymeric surfactant (PS) as a single new material can be the best alternative to solve the existing challenges. Considering the basic problems of chemical injection, this work focuses on the surface adsorption of polymer/surfactant on carbonate reservoirs (CRs). In this work, polyacrylamide was synthesized using zwitterionic as a hydrophobic polymeric surfactant (i.e. HZPAA). For a better comparison, this substance was compared with hydrolyzed polyacrylamide (HPAA) in concentrations of 40 to 1000 mg in CRs. Examining the results states that with increasing polymer concentration, the surface absorption of HZPAA and HPAA on dolomite reservoir rocks (DRRs) with positive surface charge increases. The attendance of COO and SO<sup>3−</sup> functional groups in the matrix of the new polymer (i.e. HZPAA) creates electrostatic forces and superior surface absorption. Their mechanism works in such a way that negative functional groups attract positively charged surfaces and increase the surface absorption of the polymer. Investigations show that the new synthesized material (i.e. HZPAA) can provide a new approach to improving surface absorption in carbonate reservoirs.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100756"},"PeriodicalIF":3.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}