Shape factor analysis of water and aluminium oxide nanoparticles in a porous medium with slip effects

IF 3.8 Q2 CHEMISTRY, PHYSICAL
Prasun Choudhary , K. Loganathan , Kavita Jat , Kalpna Sharma , S. Eswaramoorthi
{"title":"Shape factor analysis of water and aluminium oxide nanoparticles in a porous medium with slip effects","authors":"Prasun Choudhary ,&nbsp;K. Loganathan ,&nbsp;Kavita Jat ,&nbsp;Kalpna Sharma ,&nbsp;S. Eswaramoorthi","doi":"10.1016/j.chphi.2025.100882","DOIUrl":null,"url":null,"abstract":"<div><div>This article explores the flow of a nanofluid over a flat plate subjected to a magnetic field. The chosen nanofluid comprises Al₂O₃ nanoparticles mixed in water as the base fluid. Various nanoparticle shapes are analyzed to inspect fluid flow and thermal transfer features. The impacts of first-order velocity slip and a porous medium are also examined. The governing flow equations are nonlinear partial differential equations that are reduced into ordinary differential equations by similarity transformations, and these reduced equations are subsequently solved numerically with the bvp4c MATLAB solver. The achieved numerical outcomes are approved using an analytical approach known as the optimal auxiliary functions method. The implications of critical parameters on flow profiles and physical quantities are illustrated via graphs and tables. Different velocity curves correspond to magnetic parameter <span><math><mi>M</mi></math></span> showing that fluid velocity <span><math><mrow><msup><mi>f</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span> decreases, while higher inputs of nanoparticle volume fraction <span><math><msub><mstyle><mi>Φ</mi></mstyle><mn>1</mn></msub></math></span> enhance fluid velocity. Higher inputs of porosity parameter <span><math><mrow><mi>P</mi><mi>s</mi></mrow></math></span> lead towards improved temperature distribution <span><math><mrow><mi>θ</mi><mo>(</mo><mi>η</mi><mo>)</mo></mrow></math></span>, while enhanced inputs of velocity slip parameter <span><math><msub><mi>S</mi><mi>v</mi></msub></math></span> provide reduced temperature profiles. This study also suggests that heat transfer enhancement varies much more significantly than the drag reduction effect in the obtained data. Streamlines and isotherm lines are also illustrated to examine the velocity and temperature characteristics for designated nanoparticle shapes.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100882"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This article explores the flow of a nanofluid over a flat plate subjected to a magnetic field. The chosen nanofluid comprises Al₂O₃ nanoparticles mixed in water as the base fluid. Various nanoparticle shapes are analyzed to inspect fluid flow and thermal transfer features. The impacts of first-order velocity slip and a porous medium are also examined. The governing flow equations are nonlinear partial differential equations that are reduced into ordinary differential equations by similarity transformations, and these reduced equations are subsequently solved numerically with the bvp4c MATLAB solver. The achieved numerical outcomes are approved using an analytical approach known as the optimal auxiliary functions method. The implications of critical parameters on flow profiles and physical quantities are illustrated via graphs and tables. Different velocity curves correspond to magnetic parameter M showing that fluid velocity f(η) decreases, while higher inputs of nanoparticle volume fraction Φ1 enhance fluid velocity. Higher inputs of porosity parameter Ps lead towards improved temperature distribution θ(η), while enhanced inputs of velocity slip parameter Sv provide reduced temperature profiles. This study also suggests that heat transfer enhancement varies much more significantly than the drag reduction effect in the obtained data. Streamlines and isotherm lines are also illustrated to examine the velocity and temperature characteristics for designated nanoparticle shapes.

Abstract Image

具有滑移效应的多孔介质中水和氧化铝纳米颗粒的形状因子分析
本文探讨了纳米流体在磁场作用下在平板上的流动。所选择的纳米流体是将Al₂O₃纳米颗粒与水混合作为基础流体。分析了不同形状的纳米颗粒,以检测流体流动和传热特性。研究了一阶速度滑移和多孔介质的影响。控制流方程为非线性偏微分方程,通过相似变换将其转化为常微分方程,并利用bvp4c MATLAB求解器对其进行数值求解。通过一种称为最优辅助函数法的解析方法,对所获得的数值结果进行了验证。关键参数对流动剖面和物理量的影响通过图表说明。不同的速度曲线对应于磁参数M,表明流体速度f′(η)减小,而纳米颗粒体积分数Φ1的输入增大流体速度。孔隙度参数Ps的高输入会改善温度分布θ(η),而速度滑移参数Sv的高输入会降低温度分布。该研究还表明,在获得的数据中,传热增强的变化要比减阻效果显著得多。流线和等温线也说明了检查指定的纳米颗粒形状的速度和温度特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信