QbD-based green synthesis and multifaceted characterization of silver nanoparticles from Mitragyna parvifolia leaves extract with enhanced bio-efficacy
{"title":"QbD-based green synthesis and multifaceted characterization of silver nanoparticles from Mitragyna parvifolia leaves extract with enhanced bio-efficacy","authors":"Sukanya Pote, Preeti Salve","doi":"10.1016/j.chphi.2025.100880","DOIUrl":null,"url":null,"abstract":"<div><div>The current study demonstrates a novel, eco-friendly synthesis of silver nanoparticles (AgNPs) using <em>Mitragyna parvifolia</em> leaf extract, guided by a Quality by Design (QbD) approach to enhance their anti-inflammatory efficacy. Distinct from conventional chemical methods, this green strategy leverages phytochemicals as natural reducing and stabilizing agents. A central composite design was employed to optimize reaction temperature and incubation time, enabling controlled nanoparticle synthesis with improved bio-efficacy. The synthesized AgNPs were characterized using spectroscopic and microscopic techniques, confirming the formation of spherical, crystalline nanoparticles with a zeta potential of –27.1 mV, indicative of high stability. UV–Vis spectroscopy revealed a surface plasmon resonance peak at 438 nm, while FTIR analysis indicated the presence of functional groups (–NH, –CH, –<em>C</em> = <em>C</em>), confirming successful capping by <em>M. parvifolia</em> phytoconstituents. XRD analysis confirmed a face-centered cubic structure with an average crystallite size of 13.05 nm, and TEM analysis revealed well-dispersed spherical particles ranging from 18 to 22 nm, with SAED patterns supporting their crystalline nature. The anti-inflammatory potential of the synthesized AgNPs was evaluated in vitro, showing significant COX-2 inhibition (IC<sub>50</sub> = 56.49 µg/ml), protein denaturation inhibition (73.89 % at 300 µg/ml), and membrane stabilization (85.94 % at 100 µg/ml), substantially outperforming the crude extract. These enhancements are attributed to the nanoscale size and effective phytochemical interaction. This study underscores the promise of QbD-optimized, plant-mediated AgNPs as potential anti-inflammatory agents and highlights their relevance in the development of sustainable nanomedicine.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100880"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current study demonstrates a novel, eco-friendly synthesis of silver nanoparticles (AgNPs) using Mitragyna parvifolia leaf extract, guided by a Quality by Design (QbD) approach to enhance their anti-inflammatory efficacy. Distinct from conventional chemical methods, this green strategy leverages phytochemicals as natural reducing and stabilizing agents. A central composite design was employed to optimize reaction temperature and incubation time, enabling controlled nanoparticle synthesis with improved bio-efficacy. The synthesized AgNPs were characterized using spectroscopic and microscopic techniques, confirming the formation of spherical, crystalline nanoparticles with a zeta potential of –27.1 mV, indicative of high stability. UV–Vis spectroscopy revealed a surface plasmon resonance peak at 438 nm, while FTIR analysis indicated the presence of functional groups (–NH, –CH, –C = C), confirming successful capping by M. parvifolia phytoconstituents. XRD analysis confirmed a face-centered cubic structure with an average crystallite size of 13.05 nm, and TEM analysis revealed well-dispersed spherical particles ranging from 18 to 22 nm, with SAED patterns supporting their crystalline nature. The anti-inflammatory potential of the synthesized AgNPs was evaluated in vitro, showing significant COX-2 inhibition (IC50 = 56.49 µg/ml), protein denaturation inhibition (73.89 % at 300 µg/ml), and membrane stabilization (85.94 % at 100 µg/ml), substantially outperforming the crude extract. These enhancements are attributed to the nanoscale size and effective phytochemical interaction. This study underscores the promise of QbD-optimized, plant-mediated AgNPs as potential anti-inflammatory agents and highlights their relevance in the development of sustainable nanomedicine.