{"title":"d20悬浮类蛋白微球中动作电位样尖峰的阻断","authors":"Panagiotis Mougkogiannis, Andrew Adamatzky","doi":"10.1016/j.chphi.2025.100922","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effects of heavy water (D<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O) on action potential-like electrical activity in proteinoid microspheres. We demonstrate that D<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O completely suppresses spontaneous electrical spiking, contrasting with the robust spiking patterns observed in deionized water (mean amplitude 5.39–9.81 mV, period 2489–2826 s). Electrochemical impedance spectroscopy shows that charge transport differs between the two environments: deionized water has charge transfer behavior (<span><math><mrow><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>≈</mo><mn>8</mn></mrow></math></span> k<span><math><mi>Ω</mi></math></span>), while D<sub>2</sub>O exhibits diffusion-dominated responses (<span><math><mrow><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>≈</mo><mn>120</mn></mrow></math></span> k<span><math><mi>Ω</mi></math></span>). Cyclic voltammetry measurements show different behaviors for D<sub>2</sub>O and H<sub>2</sub>O. D<sub>2</sub>O has stable current responses up to 900 mV/s. Then, at 1000 mV/s, there is a sharp rise (I<sub>a</sub> = <span><math><mrow><mn>22</mn><mo>.</mo><mn>71</mn><mspace></mspace><mi>μ</mi><mi>A</mi></mrow></math></span>, I<sub>c</sub> = <span><math><mrow><mo>−</mo><mn>22</mn><mo>.</mo><mn>19</mn><mspace></mspace><mi>μ</mi><mi>A</mi></mrow></math></span>). H<sub>2</sub>O, on the other hand, shows gradual current increases as the scan rate rises. Statistical analysis shows significant differences (<span><math><mrow><mi>p</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>0001</mn></mrow></math></span>) in membrane potential dynamics between the two conditions, with D<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O showing reduced variability (<span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>70</mn><mo>−</mo><mn>15</mn><mo>.</mo><mn>08</mn></mrow></math></span> mV vs <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>D</mi><mi>I</mi></mrow></msub><mo>=</mo><mn>12</mn><mo>.</mo><mn>01</mn><mo>−</mo><mn>22</mn><mo>.</mo><mn>40</mn></mrow></math></span> mV). Using an R(CW)RO topology for equivalent circuit modeling shows enhanced diffusion limits in D<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O. This suggests changes in charge transport mechanisms. The model has a <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.0736. These findings show how cellular bioelectricity works. They highlight the important role of proton dynamics in creating the basic membrane potential.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100922"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blockage of action potential-like spiking in D2O-suspended proteinoid microspheres\",\"authors\":\"Panagiotis Mougkogiannis, Andrew Adamatzky\",\"doi\":\"10.1016/j.chphi.2025.100922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the effects of heavy water (D<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O) on action potential-like electrical activity in proteinoid microspheres. We demonstrate that D<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O completely suppresses spontaneous electrical spiking, contrasting with the robust spiking patterns observed in deionized water (mean amplitude 5.39–9.81 mV, period 2489–2826 s). Electrochemical impedance spectroscopy shows that charge transport differs between the two environments: deionized water has charge transfer behavior (<span><math><mrow><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>≈</mo><mn>8</mn></mrow></math></span> k<span><math><mi>Ω</mi></math></span>), while D<sub>2</sub>O exhibits diffusion-dominated responses (<span><math><mrow><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>≈</mo><mn>120</mn></mrow></math></span> k<span><math><mi>Ω</mi></math></span>). Cyclic voltammetry measurements show different behaviors for D<sub>2</sub>O and H<sub>2</sub>O. D<sub>2</sub>O has stable current responses up to 900 mV/s. Then, at 1000 mV/s, there is a sharp rise (I<sub>a</sub> = <span><math><mrow><mn>22</mn><mo>.</mo><mn>71</mn><mspace></mspace><mi>μ</mi><mi>A</mi></mrow></math></span>, I<sub>c</sub> = <span><math><mrow><mo>−</mo><mn>22</mn><mo>.</mo><mn>19</mn><mspace></mspace><mi>μ</mi><mi>A</mi></mrow></math></span>). H<sub>2</sub>O, on the other hand, shows gradual current increases as the scan rate rises. Statistical analysis shows significant differences (<span><math><mrow><mi>p</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>0001</mn></mrow></math></span>) in membrane potential dynamics between the two conditions, with D<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O showing reduced variability (<span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>70</mn><mo>−</mo><mn>15</mn><mo>.</mo><mn>08</mn></mrow></math></span> mV vs <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>D</mi><mi>I</mi></mrow></msub><mo>=</mo><mn>12</mn><mo>.</mo><mn>01</mn><mo>−</mo><mn>22</mn><mo>.</mo><mn>40</mn></mrow></math></span> mV). Using an R(CW)RO topology for equivalent circuit modeling shows enhanced diffusion limits in D<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O. This suggests changes in charge transport mechanisms. The model has a <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.0736. These findings show how cellular bioelectricity works. They highlight the important role of proton dynamics in creating the basic membrane potential.</div></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":\"11 \",\"pages\":\"Article 100922\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022425001082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425001082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Blockage of action potential-like spiking in D2O-suspended proteinoid microspheres
This study investigates the effects of heavy water (DO) on action potential-like electrical activity in proteinoid microspheres. We demonstrate that DO completely suppresses spontaneous electrical spiking, contrasting with the robust spiking patterns observed in deionized water (mean amplitude 5.39–9.81 mV, period 2489–2826 s). Electrochemical impedance spectroscopy shows that charge transport differs between the two environments: deionized water has charge transfer behavior ( k), while D2O exhibits diffusion-dominated responses ( k). Cyclic voltammetry measurements show different behaviors for D2O and H2O. D2O has stable current responses up to 900 mV/s. Then, at 1000 mV/s, there is a sharp rise (Ia = , Ic = ). H2O, on the other hand, shows gradual current increases as the scan rate rises. Statistical analysis shows significant differences () in membrane potential dynamics between the two conditions, with DO showing reduced variability ( mV vs mV). Using an R(CW)RO topology for equivalent circuit modeling shows enhanced diffusion limits in DO. This suggests changes in charge transport mechanisms. The model has a of 0.0736. These findings show how cellular bioelectricity works. They highlight the important role of proton dynamics in creating the basic membrane potential.