Efficient modeling of dynamic properties in K3C60 using machine learning force fields

IF 4.3 Q2 CHEMISTRY, PHYSICAL
Ran Mo , Zhishuo Huang , Liviu Ungur
{"title":"Efficient modeling of dynamic properties in K3C60 using machine learning force fields","authors":"Ran Mo ,&nbsp;Zhishuo Huang ,&nbsp;Liviu Ungur","doi":"10.1016/j.chphi.2025.100931","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic properties of the alkali-doped molecular crystal K<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>C<sub>60</sub> are investigated using machine learning force field (MLFF). Our trained force fields successfully reproduce phonons comparable to those from density functional theory 10-times faster in computational efficiency. Specific heat with MLFF also show good agreement with experimental data, demonstrating its reliability for thermodynamic analysis. Two descriptor schemes, Smooth Overlap of Atomic Positions and Atomic Cluster Expansion, are employed and systematically compared. This study represents the first detailed exploration of dynamic properties in molecular crystals using MLFF, highlighting MLFF’s potential in more complex molecular crystals, such as C<sub>60</sub> disorder in fullerides, molecular melting.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100931"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425001173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic properties of the alkali-doped molecular crystal K3C60 are investigated using machine learning force field (MLFF). Our trained force fields successfully reproduce phonons comparable to those from density functional theory 10-times faster in computational efficiency. Specific heat with MLFF also show good agreement with experimental data, demonstrating its reliability for thermodynamic analysis. Two descriptor schemes, Smooth Overlap of Atomic Positions and Atomic Cluster Expansion, are employed and systematically compared. This study represents the first detailed exploration of dynamic properties in molecular crystals using MLFF, highlighting MLFF’s potential in more complex molecular crystals, such as C60 disorder in fullerides, molecular melting.

Abstract Image

基于机器学习力场的K3C60动态特性高效建模
利用机器学习力场(MLFF)研究了碱掺杂分子晶体K3C60的动态特性。我们训练的力场成功地再现了与密度泛函理论相当的声子,计算效率提高了10倍。MLFF的比热与实验数据吻合较好,证明了其在热力学分析中的可靠性。采用了原子位置平滑重叠和原子簇展开两种描述方案,并进行了系统的比较。这项研究代表了MLFF在分子晶体动力学性质上的首次详细探索,突出了MLFF在更复杂的分子晶体中的潜力,如富勒化物中的C60无序,分子熔化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信