{"title":"Investigation of Metal-Organic Frameworks (MOFs): Synthesis, Properties, and Applications - An In-Depth Review","authors":"Fatima zohra Zeggai , Zouhair Ait-Touchente , Khaldoun Bachari , Abdelhamid Elaissari","doi":"10.1016/j.chphi.2025.100864","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) are a novel category of crystalline porous hybrid materials that may be precisely adjusted regarding their structure, porosity, and functionality. Their extensive surface area, meticulously engineered pore structures, and diverse synthesis techniques—such as hydrothermal, microwave, electrochemical, and mechanochemical methods—position them prominently for applications in energy storage, gas separation, environmental remediation, and catalysis. Nonetheless, issues like inadequate photocatalytic effectiveness, suboptimal electronic conductivity, and structural instability hinder their large-scale application. Innovative techniques such as heteroatom doping, defect engineering, and the creation of hybrid composites have resulted in significant advancements. For instance, Ti-doped MOFs show a 40% increase in photocatalytic hydrogen evolution, while Ni-MOF composites that conduct electricity show a fivefold increase. This essay looks in depth at MOF synthesis, structure-property relationships, and new ways to make things work better. It also shows possible future research paths, such as making MOFs that can do more than one thing, bioinspired frameworks, and AI-enhanced MOF designs, to get around current problems and find new uses for MOFs in the future.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100864"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-organic frameworks (MOFs) are a novel category of crystalline porous hybrid materials that may be precisely adjusted regarding their structure, porosity, and functionality. Their extensive surface area, meticulously engineered pore structures, and diverse synthesis techniques—such as hydrothermal, microwave, electrochemical, and mechanochemical methods—position them prominently for applications in energy storage, gas separation, environmental remediation, and catalysis. Nonetheless, issues like inadequate photocatalytic effectiveness, suboptimal electronic conductivity, and structural instability hinder their large-scale application. Innovative techniques such as heteroatom doping, defect engineering, and the creation of hybrid composites have resulted in significant advancements. For instance, Ti-doped MOFs show a 40% increase in photocatalytic hydrogen evolution, while Ni-MOF composites that conduct electricity show a fivefold increase. This essay looks in depth at MOF synthesis, structure-property relationships, and new ways to make things work better. It also shows possible future research paths, such as making MOFs that can do more than one thing, bioinspired frameworks, and AI-enhanced MOF designs, to get around current problems and find new uses for MOFs in the future.