Novel ceramic Gd3M2Al3O12: M=Ce+3, Fe+3:Optical properties and potential applications

IF 3.8 Q2 CHEMISTRY, PHYSICAL
Dewasthali Tejaswi Ramchandra, Suman Rani
{"title":"Novel ceramic Gd3M2Al3O12: M=Ce+3, Fe+3:Optical properties and potential applications","authors":"Dewasthali Tejaswi Ramchandra,&nbsp;Suman Rani","doi":"10.1016/j.chphi.2025.100861","DOIUrl":null,"url":null,"abstract":"<div><div>Garnets are becoming popular for improving photonic device efficiency due to their chemical and physical stability, making them ideal for electronics, optics, and material science. This work studies the structural and optical properties of Gd<sub>3</sub>Ce<sub>2</sub>Al<sub>3</sub>O<sub>12</sub> (GCAG) and Gd<sub>3</sub>Fe<sub>2</sub>Al<sub>3</sub>O<sub>12</sub> (GFAG), synthesized using the sol-gel method, with sintering at 1100 °C for GCAG and 950 °C for GFAG. FESEM and FTIR spectroscopy were used to analyze phase composition and microstructure. UV–Vis spectroscopy revealed a band gap of 3.73 eV for GCAG and 2.63 eV for GFAG. Both GCAG and GFAG exhibit multicolor emission in their Down Conversion (DC) emission spectra, highlighting their intriguing optical properties.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100861"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Garnets are becoming popular for improving photonic device efficiency due to their chemical and physical stability, making them ideal for electronics, optics, and material science. This work studies the structural and optical properties of Gd3Ce2Al3O12 (GCAG) and Gd3Fe2Al3O12 (GFAG), synthesized using the sol-gel method, with sintering at 1100 °C for GCAG and 950 °C for GFAG. FESEM and FTIR spectroscopy were used to analyze phase composition and microstructure. UV–Vis spectroscopy revealed a band gap of 3.73 eV for GCAG and 2.63 eV for GFAG. Both GCAG and GFAG exhibit multicolor emission in their Down Conversion (DC) emission spectra, highlighting their intriguing optical properties.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信