Hydrothermally prepared Ag2MoO4 nanoparticles anchored on nitrogen doped rGO for asymmetric supercapacitor application

IF 3.8 Q2 CHEMISTRY, PHYSICAL
R. Shejini , V. Sabarinathan , K. Sethuraman , K. Mohanraj , J. Henry , G. Sivakumar
{"title":"Hydrothermally prepared Ag2MoO4 nanoparticles anchored on nitrogen doped rGO for asymmetric supercapacitor application","authors":"R. Shejini ,&nbsp;V. Sabarinathan ,&nbsp;K. Sethuraman ,&nbsp;K. Mohanraj ,&nbsp;J. Henry ,&nbsp;G. Sivakumar","doi":"10.1016/j.chphi.2025.100863","DOIUrl":null,"url":null,"abstract":"<div><div>The energy density and the specific capacitance are two important parameters for improving energy storage devices. In this study, we introduce the novel incorporation of nitrogen-doped reduced graphene oxide (NRGO) into Ag<sub>2</sub>MoO<sub>4</sub> nanoparticles, for use in asymmetric supercapacitor applications. The synthesized compounds were confirmed and characterized using structural, functional, nitrogen adsorption-desorption, surface, elemental analyses, and electrochemical properties. Here, the AMO<img>NRGO composite materials exhibited the pebble stone-like structure of Ag<sub>2</sub>MoO<sub>4</sub> on the NRGO surface, observed by FESEM techniques. At 1 Ag<sup>-1</sup>, the Ni foam coated with the AMO<img>NRGO (II) nanocomposite demonstrates a good C<sub>sp</sub> of 648 Fg<sup>-1</sup>. It displayed retention of 91 % of its initial capacitance over 5000 charge/discharge cycles. In an asymmetric supercapacitor (ASC) device, the electrodes of AMO<img>NRGO (II) || AC demonstrated an exceptional energy density (E<sub>d</sub>) of 44.13 Whkg<sup>-1</sup> at a discharge rate (597.79 Wkg<sup>-1</sup>). The results suggest that the AMO<img>NRGO electrodes exhibit promising electrochemical performance for the supercapacitor application.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100863"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The energy density and the specific capacitance are two important parameters for improving energy storage devices. In this study, we introduce the novel incorporation of nitrogen-doped reduced graphene oxide (NRGO) into Ag2MoO4 nanoparticles, for use in asymmetric supercapacitor applications. The synthesized compounds were confirmed and characterized using structural, functional, nitrogen adsorption-desorption, surface, elemental analyses, and electrochemical properties. Here, the AMONRGO composite materials exhibited the pebble stone-like structure of Ag2MoO4 on the NRGO surface, observed by FESEM techniques. At 1 Ag-1, the Ni foam coated with the AMONRGO (II) nanocomposite demonstrates a good Csp of 648 Fg-1. It displayed retention of 91 % of its initial capacitance over 5000 charge/discharge cycles. In an asymmetric supercapacitor (ASC) device, the electrodes of AMONRGO (II) || AC demonstrated an exceptional energy density (Ed) of 44.13 Whkg-1 at a discharge rate (597.79 Wkg-1). The results suggest that the AMONRGO electrodes exhibit promising electrochemical performance for the supercapacitor application.

Abstract Image

水热法制备氮掺杂氧化石墨烯上的Ag2MoO4纳米颗粒,用于非对称超级电容器
能量密度和比电容是改进储能器件的两个重要参数。在这项研究中,我们将氮掺杂的还原氧化石墨烯(NRGO)引入Ag2MoO4纳米颗粒中,用于不对称超级电容器的应用。对合成的化合物进行了结构、功能、氮吸附-解吸、表面、元素分析和电化学表征。在这里,通过FESEM技术观察到AMONRGO复合材料在NRGO表面表现出Ag2MoO4的鹅卵石状结构。在1 Ag-1时,包裹有AMONRGO (II)纳米复合材料的Ni泡沫具有648 Fg-1的良好Csp。在5000次充放电循环中,它的初始电容保持率为91%。在非对称超级电容器(ASC)装置中,AMONRGO (II) || AC电极在放电速率(597.79 Wkg-1)下表现出44.13 Whkg-1的异常能量密度(Ed)。结果表明,AMONRGO电极在超级电容器中具有良好的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信