Cells Tissues Organs最新文献

筛选
英文 中文
Cadherin-11 and Its Role in Tissue Fibrosis. 钙粘蛋白-11及其在组织纤维化中的作用。
IF 2.7 4区 生物学
Cells Tissues Organs Pub Date : 2023-01-01 DOI: 10.1159/000525359
Thandiwe Chavula, Sarah To, Sandeep K Agarwal
{"title":"Cadherin-11 and Its Role in Tissue Fibrosis.","authors":"Thandiwe Chavula,&nbsp;Sarah To,&nbsp;Sandeep K Agarwal","doi":"10.1159/000525359","DOIUrl":"https://doi.org/10.1159/000525359","url":null,"abstract":"<p><p>Fibrosis is the excessive deposition of extracellular matrix that results from chronic inflammation and injury, leading to the loss of tissue integrity and function. Cadherins are important adhesion molecules that classically mediate calcium-dependent cell-to-cell adhesion and play important roles in tissue development and cellular migration but likely have functions beyond these important roles. Cadherin-11 (CDH11), a member of the cadherin family, has been implicated in several pathological processes including cancer. More recent evidence suggests that CDH11 is a central mediator of tissue fibrosis. CDH11 expression is increased in patients with fibrotic diseases such as idiopathic pulmonary fibrosis and systemic sclerosis. CDH11 expression is increased in mouse models of lung, skin, liver, cardiac, renal, and intestinal fibrosis. Targeting CDH11 in murine models of fibrosis clearly demonstrates that CDH11 is a common mediator of fibrosis across multiple tissues. Insight into potential mechanisms at the cellular and molecular level is emerging. In this review, we present the evolving evidence for the involvement of CDH11 in tissue fibrosis. We also discuss some of the proposed mechanisms and highlight the potential of CDH11 as a common therapeutic target and biomarker in different fibrotic pathologies.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":"212 4","pages":"293-303"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9857525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Static Magnetic Field Promotes Proliferation, Migration, Differentiation, and AKT Activation of Periodontal Ligament Stem Cells. 静态磁场促进牙周韧带干细胞的增殖、迁移、分化和AKT激活。
IF 2.7 4区 生物学
Cells Tissues Organs Pub Date : 2023-01-01 Epub Date: 2022-03-28 DOI: 10.1159/000524291
Kun Zhang, WenBin Ge, ShiTong Luo, Zhi Zhou, YaLi Liu
{"title":"Static Magnetic Field Promotes Proliferation, Migration, Differentiation, and AKT Activation of Periodontal Ligament Stem Cells.","authors":"Kun Zhang,&nbsp;WenBin Ge,&nbsp;ShiTong Luo,&nbsp;Zhi Zhou,&nbsp;YaLi Liu","doi":"10.1159/000524291","DOIUrl":"10.1159/000524291","url":null,"abstract":"<p><p>Periodontal ligament stem cells (PDLSCs) possess self-renewal and multilineage differentiation potential and exhibit great potential for the treatment of bone tissue defects caused by inflammation. Previous studies have indicated that static magnetic field (SMF) can enhance the proliferation and differentiation of mesenchymal stem cells (MSCs). SMF has been widely used to repair bone defects and for orthodontic and implantation treatment. In this study, we revealed that a 320 mT SMF upregulates the protein expression levels of cytokines such as MCM7 and PCNA in proliferating PDLSCs. Cell counting kit-8 results revealed that the SMF group had higher optical density values than the control group. The ratio of cells in the S phase to those in the G2/M phase was significantly increased after exposure to a 320 mT SMF. In scratch assays, the SMF-treated PDLSCs exhibited a higher migration rate than the sham-exposed group after 24 h of culture, indicating that the SMF promoted the migratory ability of PDLSCs. The activity level of the early differentiation marker alkaline phosphatase and the late marker matrix mineralization, as well as osteoblast-specific gene and protein expression, were enhanced in PDLSCs exposed to the SMF. Furthermore, AKT signaling pathway was activated by SMF. Our data demonstrated that the potential mechanism of action of SMF may enhance PDLSCs proliferation and osteogenic differentiation by activating the phosphorylated AKT pathway. The elucidation of this molecular mechanism may lead to a better understanding of bone repair responses and aid in improved stem cell-mediated regeneration.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":"212 4","pages":"317-326"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9866438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Successful in vivo Transplantation of Cultured and Enriched Testicular Germ Cells of Pre-Pubertal Bucks to Busulfan-Treated Homologous Recipients. 成功地将培养和富集的青春期前雄鹿睾丸生殖细胞移植到经busulfan处理的同种受体。
IF 2.7 4区 生物学
Cells Tissues Organs Pub Date : 2023-01-01 DOI: 10.1159/000523891
Shiva Pratap Singh, Suresh Dinkar Kharche, Yogesh Kumar Soni, Manisha Pathak, Ravi Ranjan, Sullip Kumar Majhi, Rajveer Singh Pawaiya, Manoj Kumar Singh, Manmohan Singh Chauhan
{"title":"Successful in vivo Transplantation of Cultured and Enriched Testicular Germ Cells of Pre-Pubertal Bucks to Busulfan-Treated Homologous Recipients.","authors":"Shiva Pratap Singh,&nbsp;Suresh Dinkar Kharche,&nbsp;Yogesh Kumar Soni,&nbsp;Manisha Pathak,&nbsp;Ravi Ranjan,&nbsp;Sullip Kumar Majhi,&nbsp;Rajveer Singh Pawaiya,&nbsp;Manoj Kumar Singh,&nbsp;Manmohan Singh Chauhan","doi":"10.1159/000523891","DOIUrl":"https://doi.org/10.1159/000523891","url":null,"abstract":"<p><p>The objective of the present study was to establish a workable approach for the production of germ cell (GC)-depleted recipient goat model using intra-testicular busulfan treatment and transplantation of cultured and enriched caprine-male GC (cmGCs) into the homologous recipients under ultrasonography (USG) guidance. The evaluation of post-transplantation colonization of donor cmGCs and restoration of the normal architecture of seminiferous tubules (ST) was performed. For this, the cmGCs of pre-pubertal male goats were isolated and enriched by differential platting for culture until the third passage. Thereafter, cells were harvested and further enriched by magnetic-activated cell sorting using rabbit-anti-CD90 antibody. After confirmation of metabolic viability (MTT-assay) and cluster-forming ability (crystal violet staining) of CD90+ cmGCs, the cells were labeled with a lipophilic red-fluorescent dye (PKH26) before transplanted into the recipient male goats by injection directly into the mediastinum testes under USG guidance. The colonization and repopulation of transplanted CD90+ cmGCs into the recipient ST was observed up to 8 weeks post-transplantation. The PKH26-labeled donor cell-derived colonies were identified in enzymatically digested ST and cryosections of recipient testes. Moreover, histochemical analyses revealed the restoration of the normal architecture of ST of recipient testis after GC transplantation. Therefore, the results suggest that the reproductive competence of infertile animals can be restored through mGC therapy and thus the methodology presented herein could be useful to obtain donor mGCs-derived functional male gametes in the recipient animal testis.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":"212 3","pages":"232-244"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9646334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EphB3 as a Potential Mediator of Developmental and Reparative Osteogenesis. EphB3 是发育性和修复性骨生成的潜在介质
IF 2.7 4区 生物学
Cells Tissues Organs Pub Date : 2023-01-01 Epub Date: 2021-10-25 DOI: 10.1159/000520369
Rajay A D Kamath, M Douglas Benson
{"title":"EphB3 as a Potential Mediator of Developmental and Reparative Osteogenesis.","authors":"Rajay A D Kamath, M Douglas Benson","doi":"10.1159/000520369","DOIUrl":"10.1159/000520369","url":null,"abstract":"<p><p>The ephrin-B family of membrane-bound ligands is involved in skeletal patterning, osteogenesis, and bone homeostasis. Yet, despite the increasing collection of data affirming their importance in bone, the Eph tyrosine kinases that serve as the receptors for these ephrins in osteoblast stem cell niches remain unidentified. Here we report the expression of EphB3 at sites of bone growth in the embryo, especially at the calvaria suture fronts, periosteum, chondrocytes, and trabeculae of developing long bones. Strong EphB3 expression persisted in the adult calvarial sutures and in the proliferative chondrocytes of long bones, both of which are documented niches for osteoblastic stem cells. We observed EphB3-positive cells in the tissue filling a created calvarial injury, further implying EphB3 involvement in bone healing. Genetic knockout of EphB3 caused an increase in the bone tissue volume as a fraction of total volume in 6-week-old calvaria and in femoral trabecular density, compared to wild type controls. This difference resolved by 12 weeks of age, when we instead observed an increase in the bone volume of femoral trabeculae and in trabecular thickness. Our data identify EphB3 as a candidate regulator of osteogenesis either alone or in combination with other bone-expressed Ephs, and indicate that it appears to function as a limiter of bone growth.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":"212 2","pages":"125-137"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9397499/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9338479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hemolymph Node - An Immunomorphlogical Organ: Modeling the Hemolymph Node by Allografting Renal Tissue in the Rat. 血淋巴-一种免疫形态器官:用同种异体移植肾组织模拟大鼠血淋巴。
IF 2.7 4区 生物学
Cells Tissues Organs Pub Date : 2023-01-01 DOI: 10.1159/000520360
Wei-Ren Pan, Zhian Liu, De-Xu Sun, Liang Song, Chuan-Xiang Ma, Hong-Yan Dong, Zhi-Wei Liu, Fei Zhen, Yuhang Ge, Ya-Fei Sun, Kai-Xiang Ni, Fan-Qiang Zeng
{"title":"Hemolymph Node - An Immunomorphlogical Organ: Modeling the Hemolymph Node by Allografting Renal Tissue in the Rat.","authors":"Wei-Ren Pan,&nbsp;Zhian Liu,&nbsp;De-Xu Sun,&nbsp;Liang Song,&nbsp;Chuan-Xiang Ma,&nbsp;Hong-Yan Dong,&nbsp;Zhi-Wei Liu,&nbsp;Fei Zhen,&nbsp;Yuhang Ge,&nbsp;Ya-Fei Sun,&nbsp;Kai-Xiang Ni,&nbsp;Fan-Qiang Zeng","doi":"10.1159/000520360","DOIUrl":"https://doi.org/10.1159/000520360","url":null,"abstract":"<p><p>There is no authoritative characterization of the attributes of the hemolymph node (HLN) since Gibbes' first description in 1884. Early reports showed that HLN are found near the kidney in human and animals with the feature of numerous erythrocytes in sinuses. Subsequent studies mainly focused on anatomy and histology, such as the source, distribution, and quantity of erythrocytes in sinuses. Recent articles mentioned that the emergence of HLN was related to immunity, but there was no strong evidence to support this hypothesis. Therefore, it is still uncertain whether the HLN is an organ of anatomy, histology, or immunology. It has been found that the development of HLN could be elicited in the parathymic area by stimuli such as Escherichia coli, allogeneic breast cancer cells, and renal tissue that were injected/transplanted into the tail of rats in our pilot studies. In this study, the model of the HLN was established by transferring allogeneic renal tissue in the rat. Intrasinusoidal erythrocytes of the node were the component for producing a red macroscopic appearance, while macrophage-erythrocyte-lymphocyte rosettes were the major immunomorphological changes, reflecting the immune activity against the invasion of the allogeneic tissue within the node. Therefore, the HLN is an immunomorphological organ.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":"212 2","pages":"147-154"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9338480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Immunofluorescence Studies on the Expression of the SARS-CoV-2 Receptors in Human Term Placenta. 人足月胎盘中SARS-CoV-2受体表达的免疫荧光研究
IF 2.7 4区 生物学
Cells Tissues Organs Pub Date : 2023-01-01 DOI: 10.1159/000521436
Jürgen Becker, Danny Qiu, Walter Baron, Jörg Wilting
{"title":"Immunofluorescence Studies on the Expression of the SARS-CoV-2 Receptors in Human Term Placenta.","authors":"Jürgen Becker,&nbsp;Danny Qiu,&nbsp;Walter Baron,&nbsp;Jörg Wilting","doi":"10.1159/000521436","DOIUrl":"https://doi.org/10.1159/000521436","url":null,"abstract":"<p><p>Until September 2021, the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2; COVID-19) pandemic caused over 217 million infections and over 4.5 million deaths. In pregnant women, the risk factors for the need of intensive care treatment are generally the same as in the overall population. Of note, COVID-19-positive women deliver earlier than COVID-19-negative women, and the risk for severe neonatal and perinatal morbidity and mortality is significantly higher. The probability and pathways of vertical transmission of the virus from the pregnant woman to the fetus are highly controversial. Recent data have shown that 54 (13%) of 416 neonates born to COVID-19-positive women were infected. Here, we investigated term placentas collected before the SARS-CoV-2 pandemic and studied the main COVID-19 receptors angiotensin-converting enzyme 2 (ACE2), transmembrane protease serine subtype 2 (TMPRSS2), as well as neuropilin 1 (NRP1). We performed real-time PCR and immunofluorescence on cryosections in combination with markers for syncytiotrophoblast, endothelial cells, macrophages and stromal cells. The PCR studies showed expression of both the truncated delta form of ACE2, which does not bind the COVID-19 spike protein, and the long form. The ACE2 antibody used does not distinguish between the two forms. We did not observe expression of the canonical SARS-CoV-2 entry machinery on syncytio- and cytotrophoblast. ACE2 and TMPRSS2 are co-expressed in a subpopulation of stromal cells, which in part are CD68-positive macrophages. NRP1 is localized to endothelial cells. In sum, the term placenta is not an organ that directly favors vertical transmission of COVID-19; however, microtraumas and placentitis may weaken its barrier function.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":"212 2","pages":"138-146"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148884/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9350414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Different Effects of Sugars and Methods to Preserve Post-Thaw Functional Properties of Cryopreserved Caprine Spermatogonial Stem Cells. 糖对山羊精原干细胞解冻后功能特性的不同影响及保存方法。
IF 2.7 4区 生物学
Cells Tissues Organs Pub Date : 2023-01-01 Epub Date: 2023-02-02 DOI: 10.1159/000529482
Saleema Ahmedi Quadri, Shiva Pratap Singh, Suresh Dinkar Kharche, Juhi Pathak, Atul Saxena, Yogesh Kumar Soni, Dilip Swain
{"title":"Different Effects of Sugars and Methods to Preserve Post-Thaw Functional Properties of Cryopreserved Caprine Spermatogonial Stem Cells.","authors":"Saleema Ahmedi Quadri, Shiva Pratap Singh, Suresh Dinkar Kharche, Juhi Pathak, Atul Saxena, Yogesh Kumar Soni, Dilip Swain","doi":"10.1159/000529482","DOIUrl":"10.1159/000529482","url":null,"abstract":"<p><p>The present study aimed to identify the effects of sugar and methods (slow freezing [SF] vs. fast freezing [FF]) on post-thaw in vitro functional characteristics of cryopreserved caprine spermatogonial stem cells (cSSCs) and the cells obtained from cryopreserved testis tissue of prepubertal Barbari bucks. For this, in experiment 1, cSSCs were isolated and cryopreserved by either SF or FF method with different non-permeable (sugars; trehalose [140 m<sc>m</sc>; 140T or 400 m<sc>m</sc>; 400T] and sucrose [140 m<sc>m</sc>; 140S or 400 m<sc>m</sc>; 400S]) or/and permeable (5% ethylene glycol [EG] and dimethyl sulfoxide) cryoprotectants. After 1 week of cryopreservation, the cSSCs were thawed and cultured for evaluation of their characteristics. Further, in experiment 2, the effectiveness of sugars (trehalose [140 m<sc>m</sc>] or sucrose [140 m<sc>m</sc>]) for cryopreservation of testicular tissues of prepubertal Barbari bucks using the SF or FF method was evaluated. After 1 week of cryopreservation, the tissues were thawed and cSSCs were isolated and cultured for 3 weeks. In both experiments, cSSCs were evaluated for recovery rate, proliferation, metabolic viability, senescence, and stemness markers' expression. The recovery rate was 1.3-, 1.3-, and 1.1-fold higher in the 140T group compared with EG, 140S, and 400S groups, respectively. Similarly, the expression of stemness markers (protein gene product 9.5 and octamer-binding transcription factor-4) was relatively higher in 140T group compared with the other groups. In experiment 2, the recovery rate of cells per unit tissue weight was significantly (p &lt; 0.05) higher when cryopreserved using 140 m<sc>m</sc> trehalose compared with other groups. The results of immunocytochemical analyses imply the expression of pluripotent stem cell markers in cSSCs following cryopreservation. Overall, the outcome of the study demonstrates different effects of sugars and methods on post-thaw functional properties of cSSCs with superiority of 140 m<sc>m</sc> trehalose using SF method over other treatment groups. These results are important for ex vivo expansion and differentiation of cSSCs for fertility preservation and their other downstream applications.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":" ","pages":"399-415"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9209554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matrix-Bound Nanovesicles: What Are They and What Do They Do? 基质结合纳米囊泡:它们是什么?它们有什么作用?
IF 2.7 4区 生物学
Cells Tissues Organs Pub Date : 2023-01-01 DOI: 10.1159/000522575
Logan M Piening, Rebecca A Wachs
{"title":"Matrix-Bound Nanovesicles: What Are They and What Do They Do?","authors":"Logan M Piening,&nbsp;Rebecca A Wachs","doi":"10.1159/000522575","DOIUrl":"https://doi.org/10.1159/000522575","url":null,"abstract":"<p><p>Over the past 50 years, several different types of extracellular vesicles have been discovered including exosomes, microvesicles, and matrix vesicles. These vesicles are secreted by cells for specific purposes and contain cargo such as microRNA, cytokines, and lipids. A novel extracellular vesicle, the matrix-bound nanovesicle (MBV), has been recently discovered. The MBV is similar to the microvesicle, however, it is attached to the extracellular matrix, instead of being secreted. This review compares MBVs to other types of extracellular vesicles to try and better understand their origin and function. Further, this review will explain various extracellular vesicle isolation methods and how these can be used for MBVs and summarize characterization of MBV cargo such as microRNA, proteins, and lipids. Lastly, we will summarize the effects of MBVs on cells. MBVs are a novel class of extracellular vesicles that hold great promise as a platform for delivery of targeted gene and drug therapeutics.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":"212 1","pages":"111-123"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9138675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Silk-Based Matrices and c-Kit-Positive Cardiac Progenitor Cells for a Cellularized Silk Fibroin Scaffold: Study of an in vivo Model. 丝基基质和c- kit阳性心脏祖细胞用于细胞化丝素蛋白支架:体内模型的研究。
IF 2.7 4区 生物学
Cells Tissues Organs Pub Date : 2023-01-01 DOI: 10.1159/000522568
Antonella Motta, Rosario Barone, Filippo Macaluso, Filippo Giambalvo, Francesco Pecoraro, Patrizia Di Marco, Giovanni Cassata, Roberto Puleio, Claudio Migliaresi, Annalisa Guercio, Valentina Di Felice
{"title":"Silk-Based Matrices and c-Kit-Positive Cardiac Progenitor Cells for a Cellularized Silk Fibroin Scaffold: Study of an in vivo Model.","authors":"Antonella Motta,&nbsp;Rosario Barone,&nbsp;Filippo Macaluso,&nbsp;Filippo Giambalvo,&nbsp;Francesco Pecoraro,&nbsp;Patrizia Di Marco,&nbsp;Giovanni Cassata,&nbsp;Roberto Puleio,&nbsp;Claudio Migliaresi,&nbsp;Annalisa Guercio,&nbsp;Valentina Di Felice","doi":"10.1159/000522568","DOIUrl":"https://doi.org/10.1159/000522568","url":null,"abstract":"<p><p>The production of a cellularized silk fibroin scaffold is very difficult because it is actually impossible to differentiate cells into a well-organized cardiac tissue. Without vascularization, not only do cell masses fail to grow, but they may also exhibit an area of necrosis, indicating a lack of oxygen and nutrients. In the present study, we used the so-called tyrosine protein kinase kit (c-Kit)-positive cardiac progenitor cells (CPCs) to generate cardiac cellularized silk fibroin scaffolds, multipotent cells isolated from the adult heart to date that can show some degree of differentiation toward the cardiac phenotype. To test their ability to differentiate into the cardiac phenotype in vivo as well, CPC and collagen organoid-like masses were implanted into nude mice and their behavior observed. Since the 3-dimensional structure of cardiac tissue can be preserved by scaffolds, we prepared in parallel different silk fibroin scaffolds with 3 different geometries and tested their behavior in 3 different models of immunosuppressed animals. Unfortunately, CPC cellularized silk fibroin scaffolds cannot be used in vivo. CPCs implanted alone or in collagen type I gel were destroyed by CD3+ lymphocyte aggregates, whereas the porous and partially oriented scaffolds elicited a consistent foreign body response characterized by giant cells. Only the electrospun meshes were resistant to the foreign body reaction. In conclusion, c-Kit-positive CPCs, although expressing a good level of cardiac differentiation markers in vitro with or without fibroin meshes, are not suitable for an in vivo model of cardiac organoids because they are degraded by a T-cell-mediated immune response. Even scaffolds which may preserve the survival of these cells in vivo also induced a host response. However, among the tested scaffolds, the electrospun meshes (F-scaffold) induced a lower response compared to all the other tested structures.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":"212 3","pages":"258-271"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9584171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Improving Fat Transplantation Survival and Vascularization with Adenovirus E4+ Endothelial Cell-Assisted Lipotransfer. 腺病毒E4+内皮细胞辅助脂肪转移提高脂肪移植存活率和血管形成。
IF 2.9 4区 生物学
Cells Tissues Organs Pub Date : 2023-01-01 Epub Date: 2022-05-31 DOI: 10.1159/000525274
Xue Dong, Ishani Premaratne, Mariam Gadjiko, Nabih Berri, Jason A Spector
{"title":"Improving Fat Transplantation Survival and Vascularization with Adenovirus E4+ Endothelial Cell-Assisted Lipotransfer.","authors":"Xue Dong, Ishani Premaratne, Mariam Gadjiko, Nabih Berri, Jason A Spector","doi":"10.1159/000525274","DOIUrl":"10.1159/000525274","url":null,"abstract":"<p><p>Autologous fat transplantation is plagued by an unpredictable and often significant degree of graft loss. AdE4+ endothelial cells (ECs) are human endothelial cells that have been transduced with the E4ORF1 region of human adenovirus type 5, resulting in long-term preservation of EC proliferation and angiogenic capability without immortalization. We hypothesized that AdE4+ EC-enriched fat grafts would demonstrate improved volume retention secondary to enhanced angiogenesis. Three experimental groups were prepared by admixing 400 µL of patient lipoaspirate with 100 µL of AdE4+ EC suspensions (high AdE4+ EC concentration-enriched [5 × 106/mL], low AdE4+ EC concentration-enriched [1.25 × 106/mL], or PBS) and injected subcutaneously into the bilateral dorsa of nude mice. Fat transplants were explanted at 90 and 180 days for volumetric and histologic analyses. After both 90 and 180 days, AdE4+ EC-enriched fat grafts showed greater mean volume preservation compared to control grafts (p < 0.05). Regions of focal necrosis were only noticed in low AdE4+ EC concentration-enriched and control groups after 180 days. Histologic analysis demonstrated the presence of healthy adipocytes in all AdE4+ EC-enriched fat grafts in which both human and host ECs were evident after 90 and 180 days. AdE4+ EC enrichment improved fat graft volume preservation and vascularization in this murine xenograft model. Though further study is warranted, AdE4+ ECs demonstrated to be promising as a potential off-the-shelf adjunct for improving the volume, quality, and consistency of fat engraftment.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":"212 4","pages":"341-351"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9869255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信