{"title":"血淋巴-一种免疫形态器官:用同种异体移植肾组织模拟大鼠血淋巴。","authors":"Wei-Ren Pan, Zhian Liu, De-Xu Sun, Liang Song, Chuan-Xiang Ma, Hong-Yan Dong, Zhi-Wei Liu, Fei Zhen, Yuhang Ge, Ya-Fei Sun, Kai-Xiang Ni, Fan-Qiang Zeng","doi":"10.1159/000520360","DOIUrl":null,"url":null,"abstract":"<p><p>There is no authoritative characterization of the attributes of the hemolymph node (HLN) since Gibbes' first description in 1884. Early reports showed that HLN are found near the kidney in human and animals with the feature of numerous erythrocytes in sinuses. Subsequent studies mainly focused on anatomy and histology, such as the source, distribution, and quantity of erythrocytes in sinuses. Recent articles mentioned that the emergence of HLN was related to immunity, but there was no strong evidence to support this hypothesis. Therefore, it is still uncertain whether the HLN is an organ of anatomy, histology, or immunology. It has been found that the development of HLN could be elicited in the parathymic area by stimuli such as Escherichia coli, allogeneic breast cancer cells, and renal tissue that were injected/transplanted into the tail of rats in our pilot studies. In this study, the model of the HLN was established by transferring allogeneic renal tissue in the rat. Intrasinusoidal erythrocytes of the node were the component for producing a red macroscopic appearance, while macrophage-erythrocyte-lymphocyte rosettes were the major immunomorphological changes, reflecting the immune activity against the invasion of the allogeneic tissue within the node. Therefore, the HLN is an immunomorphological organ.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hemolymph Node - An Immunomorphlogical Organ: Modeling the Hemolymph Node by Allografting Renal Tissue in the Rat.\",\"authors\":\"Wei-Ren Pan, Zhian Liu, De-Xu Sun, Liang Song, Chuan-Xiang Ma, Hong-Yan Dong, Zhi-Wei Liu, Fei Zhen, Yuhang Ge, Ya-Fei Sun, Kai-Xiang Ni, Fan-Qiang Zeng\",\"doi\":\"10.1159/000520360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is no authoritative characterization of the attributes of the hemolymph node (HLN) since Gibbes' first description in 1884. Early reports showed that HLN are found near the kidney in human and animals with the feature of numerous erythrocytes in sinuses. Subsequent studies mainly focused on anatomy and histology, such as the source, distribution, and quantity of erythrocytes in sinuses. Recent articles mentioned that the emergence of HLN was related to immunity, but there was no strong evidence to support this hypothesis. Therefore, it is still uncertain whether the HLN is an organ of anatomy, histology, or immunology. It has been found that the development of HLN could be elicited in the parathymic area by stimuli such as Escherichia coli, allogeneic breast cancer cells, and renal tissue that were injected/transplanted into the tail of rats in our pilot studies. In this study, the model of the HLN was established by transferring allogeneic renal tissue in the rat. Intrasinusoidal erythrocytes of the node were the component for producing a red macroscopic appearance, while macrophage-erythrocyte-lymphocyte rosettes were the major immunomorphological changes, reflecting the immune activity against the invasion of the allogeneic tissue within the node. Therefore, the HLN is an immunomorphological organ.</p>\",\"PeriodicalId\":9717,\"journal\":{\"name\":\"Cells Tissues Organs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells Tissues Organs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000520360\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells Tissues Organs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000520360","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Hemolymph Node - An Immunomorphlogical Organ: Modeling the Hemolymph Node by Allografting Renal Tissue in the Rat.
There is no authoritative characterization of the attributes of the hemolymph node (HLN) since Gibbes' first description in 1884. Early reports showed that HLN are found near the kidney in human and animals with the feature of numerous erythrocytes in sinuses. Subsequent studies mainly focused on anatomy and histology, such as the source, distribution, and quantity of erythrocytes in sinuses. Recent articles mentioned that the emergence of HLN was related to immunity, but there was no strong evidence to support this hypothesis. Therefore, it is still uncertain whether the HLN is an organ of anatomy, histology, or immunology. It has been found that the development of HLN could be elicited in the parathymic area by stimuli such as Escherichia coli, allogeneic breast cancer cells, and renal tissue that were injected/transplanted into the tail of rats in our pilot studies. In this study, the model of the HLN was established by transferring allogeneic renal tissue in the rat. Intrasinusoidal erythrocytes of the node were the component for producing a red macroscopic appearance, while macrophage-erythrocyte-lymphocyte rosettes were the major immunomorphological changes, reflecting the immune activity against the invasion of the allogeneic tissue within the node. Therefore, the HLN is an immunomorphological organ.
期刊介绍:
''Cells Tissues Organs'' aims at bridging the gap between cell biology and developmental biology and the emerging fields of regenerative medicine (stem cell biology, tissue engineering, artificial organs, in vitro systems and transplantation biology). CTO offers a rapid and fair peer-review and exquisite reproduction quality. Special topic issues, entire issues of the journal devoted to a single research topic within the range of interests of the journal, are published at irregular intervals.