Cerebral cortexPub Date : 2025-05-01DOI: 10.1093/cercor/bhaf101
Beth Lloyd, Steven Miletić, Pierre-Louis Bazin, Scott Isherwood, Desmond H Y Tse, Asta K Håberg, Birte Forstmann, Sander Nieuwenhuis
{"title":"Subcortical nuclei of the human ascending arousal system encode anticipated reward but do not predict subsequent memory.","authors":"Beth Lloyd, Steven Miletić, Pierre-Louis Bazin, Scott Isherwood, Desmond H Y Tse, Asta K Håberg, Birte Forstmann, Sander Nieuwenhuis","doi":"10.1093/cercor/bhaf101","DOIUrl":"https://doi.org/10.1093/cercor/bhaf101","url":null,"abstract":"<p><p>Subcortical nuclei of the ascending arousal system (AAS) play an important role in regulating brain and cognition. However, functional MRI (fMRI) of these nuclei in humans involves unique challenges due to their size and location deep within the brain. Here, we used ultra-high-field MRI and other methodological advances to investigate the activity of 6 subcortical nuclei during reward anticipation and memory encoding: the locus coeruleus (LC), basal forebrain, median and dorsal raphe nuclei, substantia nigra, and ventral tegmental area. Participants performed a monetary incentive delay task, which successfully induced a state of reward anticipation, and a 24-h delayed surprise memory test. Region-of-interest analyses revealed that activity in all subcortical nuclei increased in anticipation of potential rewards as opposed to neutral outcomes. In contrast, activity in none of the nuclei predicted memory performance 24 h later. These findings provide new insights into the cognitive functions that are supported by the human AAS.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143973573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-05-01DOI: 10.1093/cercor/bhaf110
Hakuei Fujiyama, Vanessa K Bowden, Alexander D Tang, Jane Tan, Elisha Librizzi, Shayne Loft
{"title":"Repeated application of bifocal transcranial alternating current stimulation improves network connectivity but not response inhibition: a double-blind sham control study.","authors":"Hakuei Fujiyama, Vanessa K Bowden, Alexander D Tang, Jane Tan, Elisha Librizzi, Shayne Loft","doi":"10.1093/cercor/bhaf110","DOIUrl":"10.1093/cercor/bhaf110","url":null,"abstract":"<p><p>Mounting evidence suggests that transcranial alternating current stimulation can enhance response inhibition, a cognitive process crucial for sustained effort and decision-making. However, most studies have focused on within-session effects, with limited investigation into the effects of repeated applications, which are crucial for clinical applications. We examined the effects of repeated bifocal transcranial alternating current stimulation targeting the right inferior frontal gyrus and pre-supplementary motor area on response inhibition, functional connectivity, and simulated driving performance. Thirty young adults (18-35 yr) received either a sham or transcranial alternating current stimulation (20 Hz, 20 min) across 5 sessions over 2 wk. Resting-state electroencephalography assessed functional connectivity between the pre-supplementary motor area and right inferior frontal gyrus at baseline, the final transcranial alternating current stimulation session, and the 7-d follow-up. Response inhibition was measured using a stop-signal task, and driving performance was assessed before and after the intervention. The results showed significant improvements in functional connectivity in the transcranial alternating current stimulation group between sessions, though response inhibition and driving braking performance remained unchanged. However, while not the targeted behavior, general driving performance potentially improved following bifocal transcranial alternating current stimulation, with participants maintaining stable driving behavior alongside increased spare attentional capacity. These findings suggest that repeated bifocal transcranial alternating current stimulation may enhance cortical connectivity and related cognitive-motor processes, supporting its potential for clinical applications.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075771/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143985577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-05-01DOI: 10.1093/cercor/bhaf106
Edmund T Rolls, Tatyana S Turova
{"title":"Visual cortical networks for \"What\" and \"Where\" to the human hippocampus revealed with dynamical graphs.","authors":"Edmund T Rolls, Tatyana S Turova","doi":"10.1093/cercor/bhaf106","DOIUrl":"https://doi.org/10.1093/cercor/bhaf106","url":null,"abstract":"<p><p>Key questions for understanding hippocampal function in memory and navigation in humans are the type and source of visual information that reaches the human hippocampus. We measured bidirectional pairwise effective connectivity with functional magnetic resonance imaging between 360 cortical regions while 956 Human Connectome Project participants viewed scenes, faces, tools, or body parts. We developed a method using deterministic dynamical graphs to define whole cortical networks and the flow in both directions between their cortical regions over timesteps after signal is applied to V1. We revealed that a ventromedial cortical visual \"Where\" network from V1 via the retrosplenial and medial parahippocampal scene areas reaches the hippocampus when scenes are viewed. A ventrolateral \"What\" visual cortical network reaches the hippocampus from V1 via V2-V4, the fusiform face cortex, and lateral parahippocampal region TF when faces/objects are viewed. There are major implications for understanding the computations of the human vs rodent hippocampus in memory and navigation: primates with their fovea and highly developed cortical visual processing networks process information about the location of faces, objects, and landmarks in viewed scenes, whereas in rodents the representations in the hippocampal system are mainly about the place where the individual is located and self-motion between places.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143964558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-05-01DOI: 10.1093/cercor/bhaf112
Jesús Olivares, Patricio Orio, Viktor Sadílek, Oliver Schmachtenberg, Andrés Canales-Johnson
{"title":"Odorant representations indicate nonlinear processing across the olfactory system.","authors":"Jesús Olivares, Patricio Orio, Viktor Sadílek, Oliver Schmachtenberg, Andrés Canales-Johnson","doi":"10.1093/cercor/bhaf112","DOIUrl":"10.1093/cercor/bhaf112","url":null,"abstract":"<p><p>The olfactory system comprises intricate networks of interconnected brain regions that process information across both the local and long-range circuits to extract odorant identity. Similar to pattern recognition in other sensory domains, such as the visual system, recognizing odorant identity likely depends on highly nonlinear interactions between these recurrently connected nodes. In this study, we investigate whether odorant identity can be distinguished through nonlinear interactions in the local field potentials of the olfactory bulb and telencephalic regions (the ventral nucleus of the ventral telencephalon and the dorsal posterior zone of the telencephalon) in anesthetized rainbow trout. Our results show that odorant identity modulates complex information-theoretic measures, specifically information sharing and redundancy across these brain areas, indicating nonlinear processing. In contrast, traditional linear connectivity measures, such as coherence and phase synchrony, showed little or no significant modulation by odorants. These findings suggest that nonlinear interactions encoded by olfactory oscillations carry crucial odor information across the teleost olfactory system, offering insights into the broader role of nonlinear dynamics in sensory processing.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075773/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143973667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-05-01DOI: 10.1093/cercor/bhaf123
Sofia Fregni, Uta Wolfensteller, Hannes Ruge
{"title":"The connected learning brain.","authors":"Sofia Fregni, Uta Wolfensteller, Hannes Ruge","doi":"10.1093/cercor/bhaf123","DOIUrl":"https://doi.org/10.1093/cercor/bhaf123","url":null,"abstract":"<p><p>This paper extends a recent study on the neural mechanisms underlying initial learning through instruction, trial-and-error, and observation of stimulus-response associations. Adopting a network perspective, we examine the functional connectivity patterns during the early stages of learning, demonstrating that the brain undergoes extensive network reorganization, regardless of the acquisition method. Our findings reveal a general segregation of task-positive networks from the default mode network, which is paralleled by and may facilitate the integration within and between task-positive networks. This segregation-integration pattern likely reflects a balance between internal and external task-related processes, modulated by learning progression and task difficulty across different acquisition modes. Differences between learning conditions, as well as brain connectivity-behavior associations between rule learning and rule implementation, point to varying cognitive demands: more efficient learning in instruction-based learning, inhibitory processes in observation-based learning, and the integration of reward, valence, and somatomotor processes in trial-and-error learning. We conclude that while extensive neural reorganization occurs during the initial learning trials, irrespective of response implementation or acquisition mode, this reorganization also exhibits distinct features that support the unique demands of each learning method.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144149423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-05-01DOI: 10.1093/cercor/bhaf113
Tetsuo Kida, Emi Tanaka, Koji Inui
{"title":"Finger and nerve selectivity of an early somatic-motor interaction: a magnetoencephalogram study.","authors":"Tetsuo Kida, Emi Tanaka, Koji Inui","doi":"10.1093/cercor/bhaf113","DOIUrl":"https://doi.org/10.1093/cercor/bhaf113","url":null,"abstract":"<p><p>Voluntary movements of individual or multiple body parts selectively modulate cortical responsiveness to sensory inputs depending on the task requirement. It remains unclear whether this selectivity of the somatic-motor interaction in the cerebral cortex is complete or gradient along the surface of the body part and varies with task characteristics. We herein used magnetoencephalograms to investigate the selectivity of the somatic-motor interactive modulation of somatosensory evoked cortical responses during self-paced movements of individual fingers (digits 1 to 5) or dynamic self-paced tapping or static pinching movements of two fingers (digits 1 and 2). The source strength of the cortical response at 35 ms post-stimulus contralateral to a stimulation, M35c, selectively decreased when the finger innervated by the stimulated nerve was individually moved. Furthermore, dynamic tapping and static pinching movements of two fingers exerted different effects on the strength of M35c. Therefore, the present study demonstrates the involvement of finger and nerve specificity in the somatic-motor functional interaction at the early cortical stage and its task-dependent flexibility.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144092799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of working memory training on brain network integration and neurotransmitter systems: a resting-state fMRI.","authors":"Chaozong Ma, Yijun Li, Yuntao Gao, Xinxin Lin, Yilin Hou, Wei He, Yuanqiang Zhu, Jun Jiang, Yuanjun Xie, Peng Fang","doi":"10.1093/cercor/bhaf081","DOIUrl":"10.1093/cercor/bhaf081","url":null,"abstract":"<p><p>Working memory training (WMT) has been demonstrated to enhance cognitive performance, yet the underlying neural mechanisms remain insufficiently understood. Brain network connectivity, particularly as measured by the participation coefficient (PC), offers a valuable framework for elucidating these neural changes. This study investigated the effects of WMT on brain network connectivity, utilizing PC as a primary assessment of network integration and segregation. The relationship between WMT-induced changes in PC and the density of specific neurotransmitter receptors was examined. Seventy-six healthy participants were randomly assigned to either a WMT group or a control group. After 8 wks of training, the WMT group exhibited significant cognitive improvements, especially in near and far transfer tasks. These behavioral improvements were accompanied by specific changes in brain connectivity, including a reduction in PC within the sensorimotor network and node-specific alterations in the left prefrontal cortex, temporo-occipital-parietal junction, and parietal operculum. Moreover, changes in PC were significantly correlated with the density of dopamine D2 receptors, mu-opioid receptors, and metabotropic glutamate receptor 5. These findings enhance our understanding of how WMT influences cognitive function and brain network connectivity, highlighting the potential for targeting specific networks and neurotransmitter systems in cognitive training interventions.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143954142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-05-01DOI: 10.1093/cercor/bhaf115
Marjolein Mues, Avantika Mathur, James Booth
{"title":"Examining the role of phonological and semantic mechanisms during morphological processing of sentences in 7-year-old children.","authors":"Marjolein Mues, Avantika Mathur, James Booth","doi":"10.1093/cercor/bhaf115","DOIUrl":"10.1093/cercor/bhaf115","url":null,"abstract":"<p><p>Morphology refers to the smallest difference in sound that makes a difference in meaning, such as walk versus walked. Morphological skill is a key linguistic feature that impacts language and literacy outcomes, but its neural underpinnings have mostly been examined at the word level. We examined if phonological and semantic mechanisms play a role during morphological processing in sentences in 7-year-old children using functional MRI. Using a novel functional localizer approach that correlates brain activation during sound and meaning in-scanner tasks with standardized scores for phonology and semantics, we show that morphological processing is especially reliant on phonological mechanisms given significant activation in the left dorsal inferior frontal gyrus and left posterior superior temporal gyrus. Semantic mechanisms were engaged to a lesser degree in the left ventral inferior frontal gyrus. Exploratory whole-brain analyses revealed a brain-behavior correlation in the cerebellum showing that greater activation during morphological processing was related to lower language abilities. Our results suggest that processing morphological structures in sentences relies mostly on phonemic segmentation, and that those with lower language may compensate for their lower phonological skill by engaging the cerebellum to amplify and refine those phonemic representations to aid in segmentation when listening to sentences.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143964639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-05-01DOI: 10.1093/cercor/bhaf103
Sina A Schwarze, Corinna Laube, Neda Khosravani, Ulman Lindenberger, Silvia A Bunge, Yana Fandakova
{"title":"Intensive task-switching training and single-task training differentially affect behavioral and neural manifestations of cognitive control in children.","authors":"Sina A Schwarze, Corinna Laube, Neda Khosravani, Ulman Lindenberger, Silvia A Bunge, Yana Fandakova","doi":"10.1093/cercor/bhaf103","DOIUrl":"https://doi.org/10.1093/cercor/bhaf103","url":null,"abstract":"<p><p>The ability to flexibly switch between tasks develops during childhood. Children's task-switching performance improves with practice, but the underlying processes remain unclear. We used functional magnetic resonance imaging to examine how 9 weeks of task-switching training affect performance and task-related activation and functional connectivity. Children (8-11 years) were assigned to one of three groups: intensive task switching (SW; n = 72), intensive single tasking (SI; n = 74), and passive control (n = 41). While mixing costs decreased in both training groups initially, only the SW group maintained these training-related improvements at the end of training. Activation in the dorsolateral prefrontal cortex decreased with training, but again only the SW group maintained these activation decreases at the end of training. Condition-specific connectivity increases with task switching became less pronounced with training, especially in the SI group. Lower costs of task switching along with decreased task-related activations suggest increased processing efficiency in frontoparietal regions with training. Intensive task-switching training was associated with sustained changes, possibly facilitated by a greater mismatch between processing supplies and environmental demands. Our findings suggest that experience-dependent changes with intensive task-switching training do not mirror maturational processes but rather facilitate performance via more efficient task processing.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144076173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-05-01DOI: 10.1093/cercor/bhaf087
Mina Elhamiasl, Maeve R Boylan, Ryan Barry-Anwar, Zoe Pestana, Andreas Keil, Lisa S Scott
{"title":"Infant dominant rhythm desynchronization to faces and objects.","authors":"Mina Elhamiasl, Maeve R Boylan, Ryan Barry-Anwar, Zoe Pestana, Andreas Keil, Lisa S Scott","doi":"10.1093/cercor/bhaf087","DOIUrl":"https://doi.org/10.1093/cercor/bhaf087","url":null,"abstract":"<p><p>Infants' electroencephalography (EEG) dominant rhythm oscillates between 6 and 9 Hz. The desynchronization of this rhythm from baseline to the processing of visual stimuli is used as an index to better understand the development of visual attention. However, development trajectories of desynchronization remain underexplored. Additionally, it is unclear whether development of desynchronization is sensitive to task demands or if it reflects broader developmental changes. To investigate these questions, EEG data were collected from infants aged 6, 9, and 12 months while they passively viewed a fixation cross followed by 10-s trials of a female face or novel object tracked down the screen. Dominant rhythm desynchronization was calculated by subtracting power during the fixation period from power during each task condition. The results revealed significant desynchronization in response to faces at occipital electrodes for all age groups. The magnitude of the desynchronization also increased from 6 to 9 to 12 months of age in response to faces over right occipital electrodes. No significant desynchronization was observed for object stimuli. These findings suggest that dominant rhythm desynchronization develops across infancy and is sensitive to stimulus type. The increased desynchronization for faces compared to objects highlights infants' general preference for faces relative to objects.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143978569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}