Intensive task-switching training and single-task training differentially affect behavioral and neural manifestations of cognitive control in children.
Sina A Schwarze, Corinna Laube, Neda Khosravani, Ulman Lindenberger, Silvia A Bunge, Yana Fandakova
{"title":"Intensive task-switching training and single-task training differentially affect behavioral and neural manifestations of cognitive control in children.","authors":"Sina A Schwarze, Corinna Laube, Neda Khosravani, Ulman Lindenberger, Silvia A Bunge, Yana Fandakova","doi":"10.1093/cercor/bhaf103","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to flexibly switch between tasks develops during childhood. Children's task-switching performance improves with practice, but the underlying processes remain unclear. We used functional magnetic resonance imaging to examine how 9 weeks of task-switching training affect performance and task-related activation and functional connectivity. Children (8-11 years) were assigned to one of three groups: intensive task switching (SW; n = 72), intensive single tasking (SI; n = 74), and passive control (n = 41). While mixing costs decreased in both training groups initially, only the SW group maintained these training-related improvements at the end of training. Activation in the dorsolateral prefrontal cortex decreased with training, but again only the SW group maintained these activation decreases at the end of training. Condition-specific connectivity increases with task switching became less pronounced with training, especially in the SI group. Lower costs of task switching along with decreased task-related activations suggest increased processing efficiency in frontoparietal regions with training. Intensive task-switching training was associated with sustained changes, possibly facilitated by a greater mismatch between processing supplies and environmental demands. Our findings suggest that experience-dependent changes with intensive task-switching training do not mirror maturational processes but rather facilitate performance via more efficient task processing.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078935/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf103","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to flexibly switch between tasks develops during childhood. Children's task-switching performance improves with practice, but the underlying processes remain unclear. We used functional magnetic resonance imaging to examine how 9 weeks of task-switching training affect performance and task-related activation and functional connectivity. Children (8-11 years) were assigned to one of three groups: intensive task switching (SW; n = 72), intensive single tasking (SI; n = 74), and passive control (n = 41). While mixing costs decreased in both training groups initially, only the SW group maintained these training-related improvements at the end of training. Activation in the dorsolateral prefrontal cortex decreased with training, but again only the SW group maintained these activation decreases at the end of training. Condition-specific connectivity increases with task switching became less pronounced with training, especially in the SI group. Lower costs of task switching along with decreased task-related activations suggest increased processing efficiency in frontoparietal regions with training. Intensive task-switching training was associated with sustained changes, possibly facilitated by a greater mismatch between processing supplies and environmental demands. Our findings suggest that experience-dependent changes with intensive task-switching training do not mirror maturational processes but rather facilitate performance via more efficient task processing.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.