Mina Elhamiasl, Maeve R Boylan, Ryan Barry-Anwar, Zoe Pestana, Andreas Keil, Lisa S Scott
{"title":"Infant dominant rhythm desynchronization to faces and objects.","authors":"Mina Elhamiasl, Maeve R Boylan, Ryan Barry-Anwar, Zoe Pestana, Andreas Keil, Lisa S Scott","doi":"10.1093/cercor/bhaf087","DOIUrl":null,"url":null,"abstract":"<p><p>Infants' electroencephalography (EEG) dominant rhythm oscillates between 6 and 9 Hz. The desynchronization of this rhythm from baseline to the processing of visual stimuli is used as an index to better understand the development of visual attention. However, development trajectories of desynchronization remain underexplored. Additionally, it is unclear whether development of desynchronization is sensitive to task demands or if it reflects broader developmental changes. To investigate these questions, EEG data were collected from infants aged 6, 9, and 12 months while they passively viewed a fixation cross followed by 10-s trials of a female face or novel object tracked down the screen. Dominant rhythm desynchronization was calculated by subtracting power during the fixation period from power during each task condition. The results revealed significant desynchronization in response to faces at occipital electrodes for all age groups. The magnitude of the desynchronization also increased from 6 to 9 to 12 months of age in response to faces over right occipital electrodes. No significant desynchronization was observed for object stimuli. These findings suggest that dominant rhythm desynchronization develops across infancy and is sensitive to stimulus type. The increased desynchronization for faces compared to objects highlights infants' general preference for faces relative to objects.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf087","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Infants' electroencephalography (EEG) dominant rhythm oscillates between 6 and 9 Hz. The desynchronization of this rhythm from baseline to the processing of visual stimuli is used as an index to better understand the development of visual attention. However, development trajectories of desynchronization remain underexplored. Additionally, it is unclear whether development of desynchronization is sensitive to task demands or if it reflects broader developmental changes. To investigate these questions, EEG data were collected from infants aged 6, 9, and 12 months while they passively viewed a fixation cross followed by 10-s trials of a female face or novel object tracked down the screen. Dominant rhythm desynchronization was calculated by subtracting power during the fixation period from power during each task condition. The results revealed significant desynchronization in response to faces at occipital electrodes for all age groups. The magnitude of the desynchronization also increased from 6 to 9 to 12 months of age in response to faces over right occipital electrodes. No significant desynchronization was observed for object stimuli. These findings suggest that dominant rhythm desynchronization develops across infancy and is sensitive to stimulus type. The increased desynchronization for faces compared to objects highlights infants' general preference for faces relative to objects.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.