{"title":"Visual cortical networks for \"What\" and \"Where\" to the human hippocampus revealed with dynamical graphs.","authors":"Edmund T Rolls, Tatyana S Turova","doi":"10.1093/cercor/bhaf106","DOIUrl":null,"url":null,"abstract":"<p><p>Key questions for understanding hippocampal function in memory and navigation in humans are the type and source of visual information that reaches the human hippocampus. We measured bidirectional pairwise effective connectivity with functional magnetic resonance imaging between 360 cortical regions while 956 Human Connectome Project participants viewed scenes, faces, tools, or body parts. We developed a method using deterministic dynamical graphs to define whole cortical networks and the flow in both directions between their cortical regions over timesteps after signal is applied to V1. We revealed that a ventromedial cortical visual \"Where\" network from V1 via the retrosplenial and medial parahippocampal scene areas reaches the hippocampus when scenes are viewed. A ventrolateral \"What\" visual cortical network reaches the hippocampus from V1 via V2-V4, the fusiform face cortex, and lateral parahippocampal region TF when faces/objects are viewed. There are major implications for understanding the computations of the human vs rodent hippocampus in memory and navigation: primates with their fovea and highly developed cortical visual processing networks process information about the location of faces, objects, and landmarks in viewed scenes, whereas in rodents the representations in the hippocampal system are mainly about the place where the individual is located and self-motion between places.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf106","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key questions for understanding hippocampal function in memory and navigation in humans are the type and source of visual information that reaches the human hippocampus. We measured bidirectional pairwise effective connectivity with functional magnetic resonance imaging between 360 cortical regions while 956 Human Connectome Project participants viewed scenes, faces, tools, or body parts. We developed a method using deterministic dynamical graphs to define whole cortical networks and the flow in both directions between their cortical regions over timesteps after signal is applied to V1. We revealed that a ventromedial cortical visual "Where" network from V1 via the retrosplenial and medial parahippocampal scene areas reaches the hippocampus when scenes are viewed. A ventrolateral "What" visual cortical network reaches the hippocampus from V1 via V2-V4, the fusiform face cortex, and lateral parahippocampal region TF when faces/objects are viewed. There are major implications for understanding the computations of the human vs rodent hippocampus in memory and navigation: primates with their fovea and highly developed cortical visual processing networks process information about the location of faces, objects, and landmarks in viewed scenes, whereas in rodents the representations in the hippocampal system are mainly about the place where the individual is located and self-motion between places.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.