Cerebral cortexPub Date : 2024-12-03DOI: 10.1093/cercor/bhae469
Inon Raz, Avi Gamoran, Gal Nir-Cohen, Maayan Trzewik, Moti Salti, Talya Sadeh, Michael Gilead
{"title":"The future, before, and after: Bayesian and multivariate analyses reveal shared and unique neural mechanisms of imagining and remembering the same unique event.","authors":"Inon Raz, Avi Gamoran, Gal Nir-Cohen, Maayan Trzewik, Moti Salti, Talya Sadeh, Michael Gilead","doi":"10.1093/cercor/bhae469","DOIUrl":"https://doi.org/10.1093/cercor/bhae469","url":null,"abstract":"<p><p>Research shows that the brain regions that subserve our ability to remember the past are also involved in imagining the future. Given this similarity in brain activity, it remains unclear how brain activity distinguishes imagination from memory. In the current work, we scanned participants using functional magnetic resonance imaging before and after they performed a highly unique and elaborate activity wherein they went skydiving for the first time in their lives. Multivariate pattern analysis, Bayesian inference, and a tightly controlled experimental design were used to identify the neural activity that differentiates between memory and imagination of the same events. The results showed that large swaths of the default mode network exhibited identical patterns of activity in recollection and imagination; several frontal areas were involved in imagination (but not in recollection). Representational similarity analysis revealed that the left ventral precuneus exhibited different patterns of memory and imagination. Further examination revealed that this subarea may be especially important for recollection of specific episodes. These results advance our understanding of how the critical distinction between the past and future might be manifested in the brain.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2024-12-03DOI: 10.1093/cercor/bhae488
Merel E E Koning, Nina K Wyman, Willeke M Menks, Clara Ekerdt, Guillén Fernández, Evan Kidd, Kristin Lemhöfer, James M McQueen, Gabriele Janzen
{"title":"The relationship between brain structure and function during novel grammar learning across development.","authors":"Merel E E Koning, Nina K Wyman, Willeke M Menks, Clara Ekerdt, Guillén Fernández, Evan Kidd, Kristin Lemhöfer, James M McQueen, Gabriele Janzen","doi":"10.1093/cercor/bhae488","DOIUrl":"https://doi.org/10.1093/cercor/bhae488","url":null,"abstract":"<p><p>In this study, we explored the relationship between developmental differences in gray matter structure and grammar learning ability in 159 Dutch-speaking individuals (8 to 25 yr). The data were collected as part of a recent large-scale functional MRI study (Menks WM, Ekerdt C, Lemhöfer K, Kidd E, Fernández G, McQueen JM, Janzen G. Developmental changes in brain activation during novel grammar learning in 8-25-year-olds. Dev Cogn Neurosci. 2024;66:101347. https://doi.org/10.1016/j.dcn.2024.101347) in which participants implicitly learned Icelandic morphosyntactic rules and performed a grammaticality judgment task in the scanner. Behaviorally, Menks et al. (2024) showed that grammaticality judgment task performance increased steadily from 8 to 15.4 yr, after which age had no further effect. We show in the current study that this age-related grammaticality judgment task performance was negatively related to cortical gray matter volume and cortical thickness in many clusters throughout the brain. Hippocampal volume was positively related to age-related grammaticality judgment task performance and L2 (English) vocabulary knowledge. Furthermore, we found that grammaticality judgment task performance, L2 grammar proficiency, and L2 vocabulary knowledge were positively related to gray matter maturation within parietal regions, overlapping with the functional MRI clusters that were reported previously in Menks et al. (2024) and which showed increased brain activation in relation to grammar learning. We propose that this overlap in functional and structural results indicates that brain maturation in parietal regions plays an important role in second language learning.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2024-12-03DOI: 10.1093/cercor/bhae470
Arne W Mould, David J Wright, Klaus D Bornemann, Bastian Hengerer, Rob Pinnock, Edward Drydale, James Bancroft, Nicola A L Hall, Annette von Delft, Paul E Brennan, Paul J Harrison, Wilfried Haerty, Elizabeth M Tunbridge
{"title":"Identification and characterization of human KALRN mRNA and Kalirin protein isoforms.","authors":"Arne W Mould, David J Wright, Klaus D Bornemann, Bastian Hengerer, Rob Pinnock, Edward Drydale, James Bancroft, Nicola A L Hall, Annette von Delft, Paul E Brennan, Paul J Harrison, Wilfried Haerty, Elizabeth M Tunbridge","doi":"10.1093/cercor/bhae470","DOIUrl":"10.1093/cercor/bhae470","url":null,"abstract":"<p><p>Kalirin is a multidomain protein with important roles in neurite outgrowth, and synaptic spine formation and remodeling. Genetic and pathophysiological links with various neuropsychiatric disorders associated with synaptic dysfunction and cognitive impairment have sparked interest in its potential as a pharmacological target. Multiple Kalirin proteoforms are detected in the adult human brain, yet we know little about the diversity of the transcripts that encode them or their tissue profiles. Here, we characterized full-length KALRN transcripts expressed in the adult human frontal lobe and hippocampus using rapid amplification of complementary DNA (cDNA) ends and nanopore long-read sequencing. For comparison with non-neural tissue, we also analyzed KALRN transcripts in the aorta. Multiple novel isoforms were identified and were largely similar between the two brain regions analyzed. Alternative splicing in the brain results in preferential inclusion of exon 37, which encodes 32 amino acids upstream of the second guanine nucleotide exchange factor (GEF) domain. Structural modeling predicts that a subset of these amino acids forms a conserved alpha helix. Although deletion of these amino acids had little effect on GEF activity, it did alter Kalirin-induced neurite outgrowth suggesting that this brain-enriched splicing event may be important for neural function. These data indicate that alternative splicing is potentially important for regulating Kalirin actions in the human brain.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2024-12-03DOI: 10.1093/cercor/bhae428
Javier de Echegaray, Andreas Keil, Matthias M Müller
{"title":"Neural dynamics of attentional resource allocation in early visual cortex: emotional scenes produce competitive interactions.","authors":"Javier de Echegaray, Andreas Keil, Matthias M Müller","doi":"10.1093/cercor/bhae428","DOIUrl":"10.1093/cercor/bhae428","url":null,"abstract":"<p><p>Salient emotional visual cues receive prioritized processing in human visual cortex. To what extent emotional facilitation relies on preattentional stimulus processing preceding semantic analysis remains controversial. Making use of steady-state visual evoke potentials frequency-tagged to meaningful complex emotional scenes and their scrambled versions, presented in a 4-Hz rapid serial visual presentation fashion, the current study tested temporal dynamics of semantic and emotional cue processing. The neural dynamics of bottom-up capture of attention driven by concrete images were analyzed under a passive-viewing-like scenario and in a competitive context, where a concurrent foreground task realized with a random dot kinematogram flickering at 15 Hz enabled the concurrent monitoring of top-down selective attention. Aligned with the semantic primacy hypothesis, the steady-state visual evoke potentials' results provide evidence of an initial rapid capture of attention driven by objecthood, followed by heightened deployment of attentional resources to emotional scenes that remained stable for the entire stimulation period. We replicated previous findings in which emotional distractors first prompt visuocortical facilitation, followed by suppression of a concurrent foreground task. Modeling this time-delayed competition process fit the data better than a time-invariant trade-off between concurrent cues as assumed by most models of selective attention.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630067/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2024-12-03DOI: 10.1093/cercor/bhae479
Chantal Oderbolz, Elisabeth Stark, Sebastian Sauppe, Martin Meyer
{"title":"Concurrent processing of the prosodic hierarchy is supported by cortical entrainment and phase-amplitude coupling.","authors":"Chantal Oderbolz, Elisabeth Stark, Sebastian Sauppe, Martin Meyer","doi":"10.1093/cercor/bhae479","DOIUrl":"10.1093/cercor/bhae479","url":null,"abstract":"<p><p>Models of phonology posit a hierarchy of prosodic units that is relatively independent from syntactic structure, requiring its own parsing. It remains unexplored how this prosodic hierarchy is represented in the brain. We investigated this foundational question by means of an electroencephalography (EEG) study. Thirty young adults listened to German sentences containing manipulations at different levels of the prosodic hierarchy. Evaluating speech-to-brain cortical entrainment and phase-amplitude coupling revealed that prosody's hierarchical structure is maintained at the neural level during spoken language comprehension. The faithfulness of this tracking varied as a function of the hierarchy's degree of intactness as well as systematic interindividual differences in audio-motor synchronization abilities. The results underscore the role of complex oscillatory mechanisms in configuring the continuous and hierarchical nature of the speech signal and situate prosody as a structure indispensable from theoretical perspectives on spoken language comprehension in the brain.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659776/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142863242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2024-12-03DOI: 10.1093/cercor/bhae482
Laura Giglio, Peter Hagoort, Markus Ostarek
{"title":"Neural encoding of semantic structures during sentence production.","authors":"Laura Giglio, Peter Hagoort, Markus Ostarek","doi":"10.1093/cercor/bhae482","DOIUrl":"10.1093/cercor/bhae482","url":null,"abstract":"<p><p>The neural representations for compositional processing have so far been mostly studied during sentence comprehension. In an fMRI study of sentence production, we investigated the brain representations for compositional processing during speaking. We used a rapid serial visual presentation sentence recall paradigm to elicit sentence production from the conceptual memory of an event. With voxel-wise encoding models, we probed the specificity of the compositional structure built during the production of each sentence, comparing an unstructured model of word meaning without relational information with a model that encodes abstract thematic relations and a model encoding event-specific relational structure. Whole-brain analyses revealed that sentence meaning at different levels of specificity was encoded in a large left frontal-parietal-temporal network. A comparison with semantic structures composed during the comprehension of the same sentences showed similarly distributed brain activity patterns. An ROI analysis over left fronto-temporal language parcels showed that event-specific relational structure above word-specific information was encoded in the left inferior frontal gyrus. Overall, we found evidence for the encoding of sentence meaning during sentence production in a distributed brain network and for the encoding of event-specific semantic structures in the left inferior frontal gyrus.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666472/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2024-12-03DOI: 10.1093/cercor/bhae489
Zhu-Qing Gong, Xi-Nian Zuo
{"title":"Cortical activations in cognitive task performance at multiple frequency bands.","authors":"Zhu-Qing Gong, Xi-Nian Zuo","doi":"10.1093/cercor/bhae489","DOIUrl":"10.1093/cercor/bhae489","url":null,"abstract":"<p><p>Neural oscillations are fundamental for brain function and govern various cognitive processes. Recent functional magnetic resonance imaging advances offer the opportunity to study frequency-specific properties of blood-oxygen-level-dependent oscillations at multiple frequency bands. However, most have focused on spontaneous brain activity in the resting state, leaving a gap in direct evidence regarding the specific activations of cognitive tasks across different frequency bands. We aim to address this gap by exploring the role of blood-oxygen-level-dependent oscillations across multiple frequency bands in cognitive processes. We used task-functional magnetic resonance imaging data of 339 healthy young adults from the Human Connectome Project to map the activation patterns of performing seven cognitive tasks at multiple frequency bands (ie slow-1 to slow-6). Our findings revealed that different frequency bands are associated with distinct task-activation patterns. Specifically, slow-1/2/3 oscillations primarily contribute to local sensory information processing, while slow-4 is crucial for various fundamental cognitive functions. Slow-5 is involved in cognitive processes that require greater memory load, integrated cognitive processing, and attention maintenance. This underscores the importance of analyzing a broad frequency range to capture the full spectrum of cognitive function, highlighting the diverse roles of different frequency bands in brain activity, shedding light on the underlying mechanism of brain-behavior associations.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2024-11-05DOI: 10.1093/cercor/bhae450
Matt Oxner, Veronica Mazza, Matthias M Müller
{"title":"Repetition of critical search features modulates EEG lateralized potentials in visual search.","authors":"Matt Oxner, Veronica Mazza, Matthias M Müller","doi":"10.1093/cercor/bhae450","DOIUrl":"https://doi.org/10.1093/cercor/bhae450","url":null,"abstract":"<p><p>In visual search, the repetition of target and distractor colors enables both successful search and effective distractor handling. Nevertheless, the specific consequences of trial-to-trial feature repetition in different search contexts are poorly understood. Here, we investigated how feature repetition shapes the electrophysiological and behavioral correlates of target processing and distractor handling, testing theoretically informed predictions with single-trial mixed-effects modeling. In two experiments, the colors of a fixed-shape target and singleton distractor changed unpredictably across trials. Targets were color singletons in Experiment 1, allowing efficient search among pop-out items, but were not uniquely colored in Experiment 2, encouraging slower shape-feature search. Interference by the distractor occurred only in pop-out search but was reduced by repetition. This was paralleled by the contralateral electroencephalography (EEG) response: Following a search color change, the target-related N2pc was greatly reduced, and salient distractors elicited an N2pc followed by an enhanced PD. This biphasic response was absent in Experiment 2, where color was less useful to search. Overall, distractor positivities were not sensitive to feature repetition, suggesting that they are unrelated to preparatory suppression. Attention-related lateralization components are not universally elicited by target or distractor feature values but are driven specifically by expected features important to the search task.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2024-11-05DOI: 10.1093/cercor/bhae446
Jamie Ward, Julia Simner, Ivor Simpson, Charlotte Rae, Magda Del Rio, Jessica A Eccles, Chris Racey
{"title":"Synesthesia is linked to large and extensive differences in brain structure and function as determined by whole-brain biomarkers derived from the HCP (Human Connectome Project) cortical parcellation approach.","authors":"Jamie Ward, Julia Simner, Ivor Simpson, Charlotte Rae, Magda Del Rio, Jessica A Eccles, Chris Racey","doi":"10.1093/cercor/bhae446","DOIUrl":"10.1093/cercor/bhae446","url":null,"abstract":"<p><p>There is considerable interest in understanding the developmental origins and health implications of individual differences in brain structure and function. In this pre-registered study we demonstrate that a hidden subgroup within the general population-people with synesthesia (e.g. who \"hear\" colors)-show a distinctive behavioral phenotype and wide-ranging differences in brain structure and function. We assess the performance of 13 different brain-based biomarkers (structural and functional MRI) for classifying synesthetes against general population samples, using machine learning models. The features in these models were derived from subject-specific parcellations of the cortex using the Human Connectome Project approach. All biomarkers performed above chance with intracortical myelin being a particularly strong predictor that has not been implicated in synesthesia before. Resting state data show widespread changes in the functional connectome (including less hub-based connectivity). These brain-based individual differences within the neurotypical population can be as large as those that differentiate neurotypical from clinical brain states.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567774/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2024-11-05DOI: 10.1093/cercor/bhae459
{"title":"Correction to: Partisans process policy-based and identity-based messages using dissociable neural systems.","authors":"","doi":"10.1093/cercor/bhae459","DOIUrl":"https://doi.org/10.1093/cercor/bhae459","url":null,"abstract":"","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}