Brain sources composing irregular field potentials have unique temporal signatures.

IF 2.9 2区 医学 Q2 NEUROSCIENCES
Ricardo Muñoz-Arnaiz, Julia Makarova, Valeri A Makarov, Oscar Herreras
{"title":"Brain sources composing irregular field potentials have unique temporal signatures.","authors":"Ricardo Muñoz-Arnaiz, Julia Makarova, Valeri A Makarov, Oscar Herreras","doi":"10.1093/cercor/bhaf135","DOIUrl":null,"url":null,"abstract":"<p><p>The prevailing irregular pattern of field potentials is little used due to the uncertain origin and identity of the source populations. After recovering clean source-specific dynamics (field potential-generators) in multiple brain areas of anesthetized rats we explored if they contain temporal identity features and to what extent they remain upon blending in the volume (raw field potentials). Relevant factors and mechanisms were further explored through a feed-forward model of field potentials. Signals were characterized with a multivariate set of statistical, spectral and nonlinear measures and explored with machine-learning classifiers. Despite the strong variability of electrographic patterns, field potential generators exhibit unique temporal signatures that allow their discrimination. Signatures are contained in 1 to 5 s segments in any given brain region and are robust across groups of animals. In contrast, the spatial overlap of sources and the contribution by remote potentials cause indeterminacy of raw field potentials, making them approach a noisy behavior. The so revealed source-specific signatures contain spectral and nonlinear features, thus overcoming the traditional notion of waves and frequency bands. We propose that besides upstream dynamics cytoarchitectural factors of the source population contribute to these unique signatures. These findings pave the way to utilize the vast reserve of information contained in irregular field potentials.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163988/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf135","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The prevailing irregular pattern of field potentials is little used due to the uncertain origin and identity of the source populations. After recovering clean source-specific dynamics (field potential-generators) in multiple brain areas of anesthetized rats we explored if they contain temporal identity features and to what extent they remain upon blending in the volume (raw field potentials). Relevant factors and mechanisms were further explored through a feed-forward model of field potentials. Signals were characterized with a multivariate set of statistical, spectral and nonlinear measures and explored with machine-learning classifiers. Despite the strong variability of electrographic patterns, field potential generators exhibit unique temporal signatures that allow their discrimination. Signatures are contained in 1 to 5 s segments in any given brain region and are robust across groups of animals. In contrast, the spatial overlap of sources and the contribution by remote potentials cause indeterminacy of raw field potentials, making them approach a noisy behavior. The so revealed source-specific signatures contain spectral and nonlinear features, thus overcoming the traditional notion of waves and frequency bands. We propose that besides upstream dynamics cytoarchitectural factors of the source population contribute to these unique signatures. These findings pave the way to utilize the vast reserve of information contained in irregular field potentials.

构成不规则场电位的脑源具有独特的时间特征。
由于源种群的起源和身份不确定,普遍存在的不规则场势模式很少被使用。在麻醉大鼠的多个脑区恢复干净的源特异性动态(场电位发生器)后,我们探索了它们是否包含时间同一性特征,以及它们在混合体积(原始场电位)时保留的程度。通过场电位前馈模型进一步探讨了相关因素和机制。用统计、光谱和非线性测度的多元集合对信号进行表征,并用机器学习分类器进行探索。尽管电图模式具有很强的可变性,但场电位发生器表现出独特的时间特征,使其能够被区分。特征包含在任何给定大脑区域的1到5个片段中,并且在动物群体中都是强大的。相比之下,源的空间重叠和远程电位的贡献导致原始场电位的不确定性,使其接近噪声行为。因此揭示的特定于源的特征包含谱和非线性特征,从而克服了传统的波和频带的概念。我们认为,除了上游动态外,源种群的细胞结构因素也有助于这些独特的特征。这些发现为利用不规则场电位中包含的大量信息储备铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信