{"title":"Embryonic exposure to valproic acid and neonicotinoid deteriorates the hyperpolarizing GABA shift and impairs long-term potentiation of excitatory transmission in the local circuit of intermediate medial mesopallium of chick telencephalon.","authors":"Toshiya Matsushima, Noriyuki Toji, Kazuhiro Wada, Hiroki Shikanai, Takeshi Izumi","doi":"10.1093/cercor/bhaf044","DOIUrl":"https://doi.org/10.1093/cercor/bhaf044","url":null,"abstract":"<p><p>Embryonic exposure to valproic acid and imidacloprid (a neonicotinoid insecticide) impairs filial imprinting in hatchlings, and the deteriorating effects of valproic acid are mitigated by post-hatch injection of bumetanide, a blocker of the chloride intruder Na-K-2Cl cotransporter 1. Here, we report that these exposures depolarized the reversal potential of local GABAergic transmission in the neurons of the intermediate medial mesopallium, the pallial region critical for imprinting. Furthermore, exposure increased field excitatory post-synaptic potentials in pre-tetanus recordings and impaired long-term potentiation (LTP) by low-frequency tetanic stimulation. Bath-applied bumetanide rescued the impaired LTP in the valproic acid slices, whereas VU0463271, a blocker of the chloride extruder KCC2, suppressed LTP in the control slices, suggesting that hyperpolarizing GABA action is necessary for the potentiation of excitatory synaptic transmission. Whereas a steep increase in the gene expression of KCC2 appeared compared to NKCC1 during the peri-hatch development, significant differences were not found between valproic acid and control post-hatch chicks in these genes. Instead, both valproic acid and imidacloprid downregulated several transcriptional regulators (FOS, NR4A1, and NR4A2) and upregulated the RNA component of signal recognition particles (RN7SL1). Despite different chemical actions, valproic acid and imidacloprid could cause common neuronal effects that lead to impaired imprinting.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143556007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-02-05DOI: 10.1093/cercor/bhae494
Can Yang, Xianhui He, Ying Cai
{"title":"Reactivating and reorganizing activity-silent working memory: two distinct mechanisms underlying pinging the brain.","authors":"Can Yang, Xianhui He, Ying Cai","doi":"10.1093/cercor/bhae494","DOIUrl":"10.1093/cercor/bhae494","url":null,"abstract":"<p><p>Recent studies have proposed that visual information in working memory (WM) can be maintained in an activity-silent state and reactivated by task-irrelevant high-contrast visual impulses (\"ping\"). Although pinging the brain has become a popular tool for exploring activity-silent WM, its underlying mechanisms remain unclear. In the current study, we directly compared the neural reactivation effects and behavioral consequences of spatial-nonmatching and spatial-matching pings to distinguish the noise-reduction and target-interaction hypotheses of pinging the brain. Initially, in an electroencephalogram study, our neural decoding results showed that spatial-nonmatching pings reactivated activity-silent WM transiently without changing the original WM representations or recall performance. Conversely, spatial-matching pings reactivated activity-silent WM more durably and further reorganized WM information by decreasing neural representations' dynamics. Notably, only the reactivation strength of spatial-matching pings correlated with recall performance and was modulated by the location of memorized items, with neural reactivation occurring only when both items and pings were presented horizontally. Consistently, in a follow-up behavioral study, we found that only spatial-matching, horizontal pings impaired recall performance compared to no ping. Together, our results demonstrated two distinct mechanisms underlying pinging the brain, highlighting the critical role of the ping's context (i.e. spatial information) in reactivating and reorganizing activity-silent WM.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-02-05DOI: 10.1093/cercor/bhae490
Linan Liu, Yingxin Liu, Yongfeng Sun, Xian Lu, Yong Ji, Xiujuan Zhao, Jun Li, Chuncheng Liu
{"title":"The changes in the ratio of Dicer1 transcripts can participate in the neuronal hypoxic response by regulating miR-29b.","authors":"Linan Liu, Yingxin Liu, Yongfeng Sun, Xian Lu, Yong Ji, Xiujuan Zhao, Jun Li, Chuncheng Liu","doi":"10.1093/cercor/bhae490","DOIUrl":"10.1093/cercor/bhae490","url":null,"abstract":"<p><p>The nervous system is highly dependent on the supply of oxygen and nutrients, so when demand for oxygen exceeds its supply, hypoxia is induced. The hippocampus is very important in the nervous system. It has the ability to control human behavior, memory, emotion, and so on. Therefore, when the hippocampus is damaged by hypoxia, it may cause nervous system diseases such as Alzheimer's disease, Parkinson's disease, and stroke. Alternative splicing plays an important regulatory role in the processes of growth and disease occurrence and development. However, the function of hypoxia-induced alternative splicing in neurological diseases needs to be further studied. Therefore, we performed hypoxia stress on mouse hippocampal neuron HT22 cells and then analyzed differentially expressed genes and differential alternative splicing events by next-generation sequencing. Through bioinformatics analysis and verification, it was found that hypoxia stress regulated the expression of Rbm15 and the ratio of Dicer1 transcripts in HT22 cells. The change in the ratio of Dicer1 transcripts may be related to the upregulation of miR-29b under hypoxia stress. This study can provide multiple time point sequencing results and a theoretical basis for the study of hypoxia-related gene alternative splicing.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-02-05DOI: 10.1093/cercor/bhae503
Yao Yin, Ti Su, Xueke Wang, Bowen Hu, Rong Zhang, Feng Zhou, Tingyong Feng
{"title":"Exploring common and distinct neural basis of procrastination and impulsivity through elastic net regression.","authors":"Yao Yin, Ti Su, Xueke Wang, Bowen Hu, Rong Zhang, Feng Zhou, Tingyong Feng","doi":"10.1093/cercor/bhae503","DOIUrl":"10.1093/cercor/bhae503","url":null,"abstract":"<p><p>Prior work highlighted that procrastination and impulsivity shared a common neuroanatomical basis in the dorsolateral prefrontal cortex, implying a tight relationship between these traits. However, theorists hold that procrastination is motivated by avoiding aversiveness, while impulsivity is driven by approaching immediate pleasure. Hence, exploring the common and distinct neural basis underlying procrastination and impulsivity through functional neuroimaging becomes imperative. To address this, we employed elastic net regression to examine the links between whole-brain resting-state functional connectivity and these traits in 822 university students from China. Results showed that the functional connections between the default network and the visual network were positively associated with both traits, indicating that the dysfunction of higher-order cognition (eg self-control) may account for their tight relationship. A distinct neural basis was also identified: Procrastination was negatively associated with functional connections between the frontal-parietal network and the ventral-attention network and between the cingular-opercular network and the subcortical network. In contrast, connections between the default network and the somato-motor network were negatively associated with impulsivity. These findings suggest that procrastination may be rooted in emotion-regulation deficits, while impulsivity may be rooted in reward-processing deficits. This deeper understanding of their neural basis provides insights for developing targeted interventions.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-02-05DOI: 10.1093/cercor/bhae468
Zuozhen Cao, Zhiyong Zhao, Qinfeng Zhu, Yao Shen, Yiqi Shen, Mingyang Li, Dan Wu
{"title":"Developmental changes in connectivity-based parcellation in typical cortical areas during early life.","authors":"Zuozhen Cao, Zhiyong Zhao, Qinfeng Zhu, Yao Shen, Yiqi Shen, Mingyang Li, Dan Wu","doi":"10.1093/cercor/bhae468","DOIUrl":"https://doi.org/10.1093/cercor/bhae468","url":null,"abstract":"<p><p>The human brain undergoes profound developmental changes in the cortex during early life. Functional parcellation of the cortex may also be altered, but there was a limited methodology for quantification. Here, we employed connectivity-based parcellation of sub-regions as a marker to characterize the heterogeneous development of the cerebral cortex. Particularly, we investigated the parcellation of primary motor (M1), sensory cortex (S1), and insula based on tractography-based connectivity among 3 stages during first 2 yr of life and also adulthood. We identified 4 and 3 sub-regions along superior-to-inferior axis in M1 and S1, respectively, and 2 sub-regions along anterior-to-posterior axis in insula. Connectivity profiles and volume fractions of different sub-regions showed distinct development changes. Specifically, measures of each sub-region in M1 and S1 showed a steady development during first 2 yr of life and gradually became similar to adulthood patterns. In contrast, sub-regions in insula exhibited nearly no change in this stage but tremendous differences in adult group. These findings may suggest primary cortices may experience early development in early life, while the high-order cortex may change at a later stage. These findings provided insights into the heterogeneous development during early life and indicated the necessity of using an age-specific cortical parcellation in studying baby brains.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differential neurogenic patterns underlie the formation of primary and secondary areas in the developing somatosensory cortex.","authors":"Naoto Ohte, Takayuki Kimura, Rintaro Sekine, Shoko Yoshizawa, Yuta Furusho, Daisuke Sato, Chihiro Nishiyama, Carina Hanashima","doi":"10.1093/cercor/bhae491","DOIUrl":"10.1093/cercor/bhae491","url":null,"abstract":"<p><p>The cerebral cortex consists of hierarchically organized areas interconnected by reciprocal axonal projections. However, the coordination of neurogenesis to optimize neuronal production and wiring between distinct cortical areas remains largely unexplored. The somatosensory cortex plays a crucial role in processing tactile information, with inputs from peripheral sensory receptors relayed through the thalamus to the primary and secondary somatosensory areas. To investigate the dynamics of neurogenesis in cortical circuit formation, we employed temporal genetic fate mapping of glutamatergic neuron cohorts across the somatosensory cortices. Our analysis revealed that neuronal production in the secondary somatosensory cortex (S2) precedes that of the primary somatosensory cortex (S1) from the deep-layer neuron production period and terminates earlier. We further revealed a progressive decline in upper-layer neuron output in S2, attributed to the attenuation of the apical ventricular surface, resulting in a reduced number of upper-layer neurons within S2. These findings support the existence of a protomap mechanism governing the area-specific assembly of primary and secondary areas in the developing neocortex.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of patterns and associations of neuroinflammation in cognitive impairment.","authors":"Ruoqiu Gan, Hongsheng Xie, Ziru Zhao, Xiaoai Wu, Ruihan Wang, Baolin Wu, Qin Chen, Zhiyun Jia","doi":"10.1093/cercor/bhaf013","DOIUrl":"https://doi.org/10.1093/cercor/bhaf013","url":null,"abstract":"<p><p>Neuroinflammation has been identified as an important pathological component of cognitive impairment, and translocator protein imaging has become a valuable tool for assessing its patterns. We aimed to obtain the exact distribution of neuroinflammation in cognitive impairment and its underlying mechanisms with amyloid-beta. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, two investigators searched literature databases for studies that measured translocator protein binding levels. This measurement was performed between healthy controls and subjects with mild cognitive impairment or Alzheimer's disease via voxel-based positron emission tomography image analysis at the whole-brain level. This meta-analysis was performed with the anisotropic effect-size based algorithm. Neuroinflammation in patients with mild cognitive impairment was mainly concentrated in the left middle temporal gyrus and left amygdala. In Alzheimer's disease patients, the brain regions involved were the left inferior temporal gyrus, left calcarine fissure/surrounding cortex, left parahippocampal gyrus, right lingual gyrus, and right middle temporal gyrus. In addition, neuroinflammation in patients with cognitive impairment was highly correlated with amyloid-beta deposition in the cortex. This study deepens our understanding of the patterns of neuroinflammation in patients with cognitive impairment and its interaction with amyloid-beta, providing potential insights for therapeutic approaches targeting neuroinflammation in Alzheimer's disease.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-02-05DOI: 10.1093/cercor/bhae504
Chenyu Zhang, Jingyue Liu, Yifei Zhong, Ye Zhang, Yujia Meng, Rui Huang, He Wang, Yingjie Liu
{"title":"Deeper affection, more consumptions: consumer decision-making among people with different levels of intimacy-evidence from fNIRS.","authors":"Chenyu Zhang, Jingyue Liu, Yifei Zhong, Ye Zhang, Yujia Meng, Rui Huang, He Wang, Yingjie Liu","doi":"10.1093/cercor/bhae504","DOIUrl":"https://doi.org/10.1093/cercor/bhae504","url":null,"abstract":"<p><p>Consumer decision-making varies according to an individual's relationship with the recipient of the gift. This study used a mock purchase task to investigate consumer decision-making and its underlying neurological mechanisms when purchasing gifts of different prices for recipients with varying levels of intimacy. Functional near-infrared spectroscopy was used to record neural activity during the task. Behavioral results found that the lover group had a much higher purchasing rate than the friend group, particularly when acquiring premium products. Analysis of the functional near-infrared spectroscopy data found that neural activity in the dorsolateral prefrontal cortex and orbitofrontal cortex decreased when items were discounted, with lower activation in the dorsolateral prefrontal cortex in lovers during the purchasing of premium products. Furthermore, we identified significant differences in functional connectivity between the dorsolateral prefrontal cortex and orbitofrontal cortex under different conditions. We compared the support vector machine algorithm and logistic regression, finding that logistic regression better predicts purchasing tendencies based on neuroactivation levels. In our view, a stronger emotional connection leads to a more rewarding experience for consumers when buying premium products. This study reveals the impact of intimate relationships on consumer decision-making and provides guidance for businesses in developing marketing strategies targeted at the lover's market.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143499691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-02-05DOI: 10.1093/cercor/bhaf021
Scarlett R Howard
{"title":"The origins of number sense: a commentary on \"Is there an innate sense of number in the brain?\"","authors":"Scarlett R Howard","doi":"10.1093/cercor/bhaf021","DOIUrl":"https://doi.org/10.1093/cercor/bhaf021","url":null,"abstract":"<p><p>The question of whether a \"sense of number\" is innate has been posed in a new article by Lorenzi et al. (2025). The article explores the behavioral and neurobiological evidence from newborn animals to delve into the evolutionary origins of a sense of number. Lorenzi et al.(2025) raises new questions, interpretations, and ideas for future work to understand how number sense has evolved in humans and nonhuman animals. In this commentary, I discuss the arguments for an innate number sense, evaluate the implications for numerical cognition, and suggest how future work could fill the current gaps in our knowledge.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral cortexPub Date : 2025-02-05DOI: 10.1093/cercor/bhaf050
{"title":"Correction to: The microgravity environment affects sensorimotor adaptation and its neural correlates.","authors":"","doi":"10.1093/cercor/bhaf050","DOIUrl":"10.1093/cercor/bhaf050","url":null,"abstract":"","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831691/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}