蒂莫西综合征小鼠模型中初级视觉皮层生理和功能的破坏。

IF 2.9 2区 医学 Q2 NEUROSCIENCES
Rosie Craddock, Cezar M Tigaret, Frank Sengpiel
{"title":"蒂莫西综合征小鼠模型中初级视觉皮层生理和功能的破坏。","authors":"Rosie Craddock, Cezar M Tigaret, Frank Sengpiel","doi":"10.1093/cercor/bhaf162","DOIUrl":null,"url":null,"abstract":"<p><p>Timothy syndrome (TS) is a rare genetic disorder caused by mutations in the CACNA1C gene, which encodes the L-type calcium channel α1 CaV1.2 subunit. While it is expressed throughout the body, the most serious symptoms are cardiac and neurological. Classical TS type 1 (TS1) and TS type 2 (TS2) mutations cause prolonged action potentials (APs) in cardiomyocytes and in induced neurons derived from pluripotent stem cells taken from TS patients, but the effects of TS mutations on neuronal function in vivo are not fully understood. TS is frequently associated with autistic traits, which in turn have been linked to altered sensory processing. Using the TS2-neo mouse model, we analyzed the effects of TS2 mutation on the visual system. We observed a widening of APs of pyramidal cells in ex vivo patch clamp recordings and an increase in the density of parvalbumin-positive cells in the primary visual cortex. Neurons from TS2-neo mice recorded extracellularly in vivo were less likely to respond to visual stimuli of low spatial frequency, but more likely to respond to visual stimuli of mid-to-high spatial frequency, compared to those from wild-type mice. These results point to a basic processing abnormality in the visual cortex of TS2-neo mice.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203796/pdf/","citationCount":"0","resultStr":"{\"title\":\"Disruptions in primary visual cortex physiology and function in a mouse model of Timothy syndrome.\",\"authors\":\"Rosie Craddock, Cezar M Tigaret, Frank Sengpiel\",\"doi\":\"10.1093/cercor/bhaf162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Timothy syndrome (TS) is a rare genetic disorder caused by mutations in the CACNA1C gene, which encodes the L-type calcium channel α1 CaV1.2 subunit. While it is expressed throughout the body, the most serious symptoms are cardiac and neurological. Classical TS type 1 (TS1) and TS type 2 (TS2) mutations cause prolonged action potentials (APs) in cardiomyocytes and in induced neurons derived from pluripotent stem cells taken from TS patients, but the effects of TS mutations on neuronal function in vivo are not fully understood. TS is frequently associated with autistic traits, which in turn have been linked to altered sensory processing. Using the TS2-neo mouse model, we analyzed the effects of TS2 mutation on the visual system. We observed a widening of APs of pyramidal cells in ex vivo patch clamp recordings and an increase in the density of parvalbumin-positive cells in the primary visual cortex. Neurons from TS2-neo mice recorded extracellularly in vivo were less likely to respond to visual stimuli of low spatial frequency, but more likely to respond to visual stimuli of mid-to-high spatial frequency, compared to those from wild-type mice. These results point to a basic processing abnormality in the visual cortex of TS2-neo mice.</p>\",\"PeriodicalId\":9715,\"journal\":{\"name\":\"Cerebral cortex\",\"volume\":\"35 6\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203796/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral cortex\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cercor/bhaf162\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf162","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

Timothy综合征(TS)是一种由编码l型钙通道α1 CaV1.2亚基的CACNA1C基因突变引起的罕见遗传病。虽然它在全身表达,但最严重的症状是心脏和神经系统。经典的TS1型(TS1)和TS2型(TS2)突变导致心肌细胞和来自TS患者多能干细胞的诱导神经元的动作电位(APs)延长,但TS突变对体内神经元功能的影响尚不完全清楚。TS通常与自闭症特征有关,而自闭症特征又与感觉处理的改变有关。利用TS2-neo小鼠模型,我们分析了TS2突变对视觉系统的影响。我们在离体膜片钳记录中观察到锥体细胞的ap扩大,初级视觉皮层中细小蛋白阳性细胞的密度增加。与野生型小鼠相比,细胞外实验记录的TS2-neo小鼠神经元对低空间频率视觉刺激的反应较少,而对中高空间频率视觉刺激的反应较多。这些结果表明TS2-neo小鼠的视觉皮层存在基本的加工异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disruptions in primary visual cortex physiology and function in a mouse model of Timothy syndrome.

Timothy syndrome (TS) is a rare genetic disorder caused by mutations in the CACNA1C gene, which encodes the L-type calcium channel α1 CaV1.2 subunit. While it is expressed throughout the body, the most serious symptoms are cardiac and neurological. Classical TS type 1 (TS1) and TS type 2 (TS2) mutations cause prolonged action potentials (APs) in cardiomyocytes and in induced neurons derived from pluripotent stem cells taken from TS patients, but the effects of TS mutations on neuronal function in vivo are not fully understood. TS is frequently associated with autistic traits, which in turn have been linked to altered sensory processing. Using the TS2-neo mouse model, we analyzed the effects of TS2 mutation on the visual system. We observed a widening of APs of pyramidal cells in ex vivo patch clamp recordings and an increase in the density of parvalbumin-positive cells in the primary visual cortex. Neurons from TS2-neo mice recorded extracellularly in vivo were less likely to respond to visual stimuli of low spatial frequency, but more likely to respond to visual stimuli of mid-to-high spatial frequency, compared to those from wild-type mice. These results point to a basic processing abnormality in the visual cortex of TS2-neo mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信