{"title":"Life-cycle carbon-intensity mapping for hydrogen-driven energy and economy","authors":"","doi":"10.1016/j.xcrp.2024.102146","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102146","url":null,"abstract":"<p>Innovative approaches on clean alternative energy sources are important for future decarbonization. Electrification and hydrogen energy are crucial pathways for decarbonization in both transportation and buildings. However, life-cycle stage-wise carbon intensity is still unclear for both hydrogen- and electricity-driven energy. Furthermore, systematic evaluation on low-carbon transition pathways is insufficient specifically within the Internet of Energy that interfaces hydrogen and electricity. Here, a generic approach is proposed for quantifying life-cycle stage-wise carbon intensity of both hydrogen- and electricity-driven energy internets. Life-cycle decarbonization effects on vehicle pathways are compared with traditional vehicles with internal-combustion engines. Techno-economic and environmental feasibility of the future advanced hydrogen-driven Internet of Energy is analyzed based on net present value. The region-wise carbon-intensity map and associated decarbonization strategies will help researchers and policymakers in promoting sustainable development with the hydrogen economy.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"30 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dayanand Kumar, Rajan Bharti, Hanrui Li, Dhananjay D. Kumbhar, Nazek El-Atab
{"title":"Optoelectronic wide-band-gap oxide-based memristor for mimicking human eye sensory perception and object tracking","authors":"Dayanand Kumar, Rajan Bharti, Hanrui Li, Dhananjay D. Kumbhar, Nazek El-Atab","doi":"10.1016/j.xcrp.2024.102144","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102144","url":null,"abstract":"By integrating sensing, processing, and memory functionalities, the human sensory systems are extraordinarily energy and power efficient. Here, we report a ZnSnO (ZTO)/InO-based optoelectronic device that senses varying light intensities and perceives different motion behaviors. The device exhibits exceptional voltage-activated synaptic properties, encompassing features such as short-term and long-term plasticity, alongside notable light-sensitive characteristics that enable diverse light-triggered synaptic functions. Through simultaneous light and electrical voltage signals, we achieve light-enhanced/electrically erasing behavior, light-initiated paired-pulse facilitation (PPF), and learning-forgetting-relearning processes by tuning the 405 nm wavelength optical light. Furthermore, by manipulating charge dynamics through light intensity and duration, we replicate the basic sensing and perception function of the human eyes as a volatile receptor, showing potential for artificial retina applications. The device also demonstrates the capability to track objects and eye movement, holding promise for virtual reality systems.","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"45 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reactive force-field simulation and experimental validation of cyclic defects in silicon anodes for lithium-ion batteries","authors":"","doi":"10.1016/j.xcrp.2024.102148","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102148","url":null,"abstract":"<p>Silicon anodes for lithium-ion batteries offer high theoretical capacity but face practical challenges of capacity fading due to significant volumetric changes during charge-discharge cycles. To reveal the underlying mechanisms, we employ reactive force fields (ReaxFFs) in molecular dynamics simulations to conduct atomic analyses of lithiation and delithiation cycles of silicon particles with three diameters. Our simulations demonstrate a volumetric expansion exceeding 280%, primarily along the ⟨110⟩ direction, with an inward movement of the interface between lithiated and unlithiated regions. We introduce a metric, “geometric defect,” derived from the centroid deviation of neighboring atoms, to evaluate the structural integrity of the silicon anode. Geometric defect state of charge curves show a 5% capacity fade due to silicon loss after the initial cycle. Experimental validation confirms a capacity loss exceeding 40% after the first cycle, attributed to internal defects within silicon particles, aligning well with our simulation results.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"63 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The convergence of bioelectronics and engineered living materials","authors":"","doi":"10.1016/j.xcrp.2024.102149","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102149","url":null,"abstract":"<p>Emulating nature’s living properties in functional materials is a crucial step toward creating adaptive and self-regulating systems capable of integration with biological tissues. In this perspective, we first investigate the various strategies employed in the field of bioelectronics and engineered living materials to replicate nature's living functionalities. Then, we explore the convergence of bioelectronics and engineered living materials, highlighting an approach called living bioelectronics. We posit that merging these two fields can enable the creation of robust, adaptable devices that replicate the dynamic functionalities of living systems. Living bioelectronics integrate the strength of both disciplines while complementing their weaknesses, heralding opportunities for biosensing, personalized therapies, and applications beyond healthcare.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"61 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recognition of RNA secondary structures with a programmable peptide nucleic acid-based platform","authors":"","doi":"10.1016/j.xcrp.2024.102150","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102150","url":null,"abstract":"<p>RNA secondary structures comprise double-stranded (ds) and single-stranded (ss) regions. Antisense peptide nucleic acids (asPNAs) enable the targeting of ssRNAs and weakly formed dsRNAs. Nucleobase-modified dsRNA-binding PNAs (dbPNAs) allow for dsRNA targeting. A programmable RNA-structure-specific targeting strategy is needed for the simultaneous recognition of dsRNAs and ssRNAs. Here, we report on combining dbPNAs and asPNAs (designated as daPNAs) for the targeting of dsRNA-ssRNA junctions. Our data suggest that combining traditional asPNA (with a 4-letter code: T, C, A, and G) and dbPNA (with a 4-letter code: T or s<sup>2</sup>U, L, Q, and E) scaffolds facilitates RNA-structure-specific tight binding (nM to μM). We further apply our daPNAs in substrate-specific inhibition of Dicer acting on precursor miRNA (pre-miR)-198 in a cell-free assay and regulating ribosomal frameshifting induced by model hairpins in both cell-free and cell culture assays. daPNAs would be a useful platform for developing chemical probes and therapeutic ligands targeting RNA.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"35 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A nature-based solution for regulating the inflammatory phase of diabetic wound healing using a cold atmospheric plasma","authors":"","doi":"10.1016/j.xcrp.2024.102147","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102147","url":null,"abstract":"<p>Diabetes is an inflammatory disease that usually causes chronic wounds for which no satisfactory therapies currently exist. Here we report a physical approach using a cold atmospheric plasma (CAP) to target diabetic wounds locally for regulating the inflammatory phase of the wounds. In this paper, a comprehensive analysis of inflammatory factors combined with physical investigations of the helium plasma jet characteristics is conducted. The physical and biological safety and clinical application prospects of the CAP jet for the human body are also analyzed. The results demonstrate for the first time that CAP therapy can stimulate the body’s own inflammatory regulation function to achieve a normal state, rather than excessively interfere in a single target. This involves the inhibition of pro-inflammatory factors in the onset subphase and the promotion of anti-inflammatory factors in the subsequent resolution subphase. This research contributes to the development of highly effective and safe topical therapies to promote chronic wound healing.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"47 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beyond slurry cast: Patterning of a monolithic active material sheet to form free-standing, solvent-free, and low-tortuosity battery electrodes","authors":"","doi":"10.1016/j.xcrp.2024.102143","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102143","url":null,"abstract":"<p>Commercial lithium-ion battery electrodes today are manufactured by slurry casting active material powder onto a metal current collector foil. This manufacturing process has become embedded over recent decades but limits commercial cell performance. This paper presents patterning of a monolithic active material sheet as an alternative to slurry casting. The concept is proven experimentally by laser drilling a pyrolytic graphite sheet to increase the gravimetric active material capacity from 10 mA h g<sup>−1</sup> to 450 mA h g<sup>−1</sup>, when used as a negative lithium-intercalation electrode. Cell-level calculations show that, without changing the chemistry, a pyrolytic graphite sheet electrode with a hexagonal array of 5 μm diameter, 20 μm pitch channels could increase the gravimetric energy density of a LGM50 cell by 22% to 322 W h kg<sup>−1</sup>. By moving beyond slurry casting, patterned monolithic electrodes could enable batteries with lower cost, reduced energy intensity, and enhanced performance.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"65 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rational design and fabrication of hierarchical ceramics using bioinspired microstructures for tailorable strength and toughness","authors":"","doi":"10.1016/j.xcrp.2024.102140","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102140","url":null,"abstract":"<p>Dense bioceramics feature hierarchical microstructures with weak interfaces that endow them with strength, toughness, and structural functionalities. Conversely, most technical ceramics possess limited structural complexity and strong grain boundaries that restrict their toughness and functions. Here, we report a rational design strategy to fabricate ceramics with various bioinspired microstructural motifs, leading to strength, toughness, and locally varying properties. We employ magnetically assisted slip casting (MASC) for local orientations of alumina microplatelets and ultrafast high-temperature sintering (UHS) as a densifying method. We sequentially vary the slurry composition and sintering processes to attain high texture, relative density, and weak grain interfaces. We realize dense ceramics with horizontal, periodic, and graded motifs that exhibit direction- and site-specific properties, with flexural strengths of ∼290, 155, and 215 MPa, and fracture toughness of ∼7, 5, and 10 MPa·m<sup>0.5</sup>, respectively. The strategy could be used to fabricate ceramic composites for tailorable local and bulk properties.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"25 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical recycling of post-consumer polyester wastes using a tertiary amine organocatalyst","authors":"","doi":"10.1016/j.xcrp.2024.102145","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102145","url":null,"abstract":"<p>Recycling diverse waste plastics poses challenges due to complex sorting and processing, resulting in high costs and inefficiency. To tackle this, we present a metal-free catalytic sorting method for targeted deconstruction of polyester from post-consumer plastic waste, encompassing textiles, plastic mixtures, and multilayer packaging materials. This method employs N-methylpiperidine, a tertiary amine catalyst in methanol, to depolymerize polyethylene terephthalate (PET). Operating under these conditions (160°C, 1 h), we achieve 100% yields of dimethyl terephthalate and ethylene glycol. This technique also effectively breaks down other polyesters, including polylactic acid, polycarbonate, and polybutylene terephthalate, yielding high-yield monomers at relatively low temperatures. Through comprehensive nuclear magnetic resonance (NMR) analysis, we propose that N-methylpiperidine’s role is in enhancing methanol nucleophilicity and activating PET’s ester bond. Our insights advance the chemical recycling of post-consumer plastic waste, offering a potentially simple and efficient path to closing the polyester production loop.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"4 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent total syntheses of fusicoccanes","authors":"","doi":"10.1016/j.xcrp.2024.102141","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102141","url":null,"abstract":"<p>Fusicoccane diterpenoids, originating from fungi, plants, and bacteria, constitute a diverse natural product family featuring a 5-8-5 tricyclic framework. They were restricted to plant physiology in the past. However, fusicoccanes are presently at the forefront of biomedicine and are indispensable for probing 14-3-3 protein-protein interactions (PPIs). The need for material supply and scaffold diversification encouraged their study by the synthetic community. This review highlights the total synthetic works on fusicoccane diterpenoids published in the last 5 years. Key transformations including ring-closing metathesis, metal-catalyzed cross-coupling, and carbocyclization markedly enhanced synthetic efficiency and versatility. Recently identified biosynthetic transformations inspired innovative chemoenzymatic strategies. Investigation into the functional aspects of fusicoccanes should be the future direction to realize their therapeutic potential as general 14-3-3 PPI modulators.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"26 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}