{"title":"生物电子学与工程生物材料的融合","authors":"","doi":"10.1016/j.xcrp.2024.102149","DOIUrl":null,"url":null,"abstract":"<p>Emulating nature’s living properties in functional materials is a crucial step toward creating adaptive and self-regulating systems capable of integration with biological tissues. In this perspective, we first investigate the various strategies employed in the field of bioelectronics and engineered living materials to replicate nature's living functionalities. Then, we explore the convergence of bioelectronics and engineered living materials, highlighting an approach called living bioelectronics. We posit that merging these two fields can enable the creation of robust, adaptable devices that replicate the dynamic functionalities of living systems. Living bioelectronics integrate the strength of both disciplines while complementing their weaknesses, heralding opportunities for biosensing, personalized therapies, and applications beyond healthcare.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"61 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The convergence of bioelectronics and engineered living materials\",\"authors\":\"\",\"doi\":\"10.1016/j.xcrp.2024.102149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Emulating nature’s living properties in functional materials is a crucial step toward creating adaptive and self-regulating systems capable of integration with biological tissues. In this perspective, we first investigate the various strategies employed in the field of bioelectronics and engineered living materials to replicate nature's living functionalities. Then, we explore the convergence of bioelectronics and engineered living materials, highlighting an approach called living bioelectronics. We posit that merging these two fields can enable the creation of robust, adaptable devices that replicate the dynamic functionalities of living systems. Living bioelectronics integrate the strength of both disciplines while complementing their weaknesses, heralding opportunities for biosensing, personalized therapies, and applications beyond healthcare.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102149\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102149","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The convergence of bioelectronics and engineered living materials
Emulating nature’s living properties in functional materials is a crucial step toward creating adaptive and self-regulating systems capable of integration with biological tissues. In this perspective, we first investigate the various strategies employed in the field of bioelectronics and engineered living materials to replicate nature's living functionalities. Then, we explore the convergence of bioelectronics and engineered living materials, highlighting an approach called living bioelectronics. We posit that merging these two fields can enable the creation of robust, adaptable devices that replicate the dynamic functionalities of living systems. Living bioelectronics integrate the strength of both disciplines while complementing their weaknesses, heralding opportunities for biosensing, personalized therapies, and applications beyond healthcare.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.