{"title":"IER3: exploring its dual function as an oncogene and tumor suppressor","authors":"Meena Kanduri, Santhilal Subhash, Rossana Putino, Sagar Mahale, Chandrasekhar Kanduri","doi":"10.1038/s41417-025-00891-y","DOIUrl":"10.1038/s41417-025-00891-y","url":null,"abstract":"The IER3 gene has a complex role in cancer biology, acting either as a tumor suppressor or an oncogene, depending on the cancer type. This duality underscores the complexity and importance of molecular pathways in modulating cancer behavior. Despite its significance in cancer development, there is a dearth of studies elucidating the exact mechanisms underlying IER3’s involvement in modulating cancer behavior. Here, utilizing cervical carcinoma and neuroblastoma (NB) cell lines as model systems we characterized the pathways that mediate the functional switch between the oncogenic and tumor suppressor roles of IER3. In HeLa cells, IER3 expression promotes an oncogenic program that includes immediate early response pathway genes such as EGR2, FOS, and JUN. However, in NB cells, IER3 suppresses the EGR2-dependent oncogenic program. This differential regulation of EGR2 by IER3 involves epigenetic modulation of the EGR2 promoter. IER3 dependent tumor suppressor pathway in NB cells relies on ADAM19 gene. Thus, our findings uncover the molecular pathways that dictate the context-dependent roles of IER3 in cancer, providing insights into its dual functionality in different cancer types.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 4","pages":"450-463"},"PeriodicalIF":4.8,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-025-00891-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143647095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saint T. Cervera, Selene Martínez, María Iranzo-Martínez, Laura Notario, Raquel M. Melero-Fernández de Mera, Javier Alonso
{"title":"Targeted inactivation of EWSR1 : : FLI1 gene in Ewing sarcoma via CRISPR/Cas9 driven by an Ewing-specific GGAA promoter","authors":"Saint T. Cervera, Selene Martínez, María Iranzo-Martínez, Laura Notario, Raquel M. Melero-Fernández de Mera, Javier Alonso","doi":"10.1038/s41417-025-00887-8","DOIUrl":"10.1038/s41417-025-00887-8","url":null,"abstract":"We have recently demonstrated that genetic inactivation of EWSR1 : : FLI1 by CRISPR/Cas9, successfully blocks cell proliferation in a cell model of Ewing sarcoma. However, CRISPR/Cas9-mediated gene editing can exhibit off-target effects, and thus, precise regulation of Cas9 expression in target cells is essential to develop gene-editing strategies to inactivate EWSR1 : : FLI1 in Ewing sarcoma cells. In this study, we demonstrate that Cas9 can be specifically expressed in Ewing sarcoma cells when located downstream a promoter consisting of GGAA repeats and a consensus TATA box (GGAAprom). Under these conditions, Cas9 is selectively expressed in Ewing sarcoma cells that express EWSR1 : : FLI1 oncoproteins, but not in cells expressing wild-type FLI1. Consequently, Ewing sarcoma cells infected with GGAAprom>Cas9 and a specific gRNA designed to inactivate EWSR1 : : FLI1, showed successful EWSR1 : : FLI1 inactivation and the subsequent blockade of cell proliferation. Notably, GGAAprom>Cas9 can be efficiently delivered to Ewing sarcoma cells via adenoviral vectors both in vitro and in vivo, highlighting the potential of this approach for Ewing sarcoma treatment. Our results demonstrate that the CRISPR/Cas9 machinery is safe and specific for Ewing sarcoma cells when driven under a GGAAprom, paving the way for the development of cancer gene therapies based on the selective expression of genes with therapeutic potential.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 4","pages":"437-449"},"PeriodicalIF":4.8,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-025-00887-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143633571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanchi Cheng, Zhijun Xiao, Weijia Cai, Ting Zhou, Zhen Yang
{"title":"Suppression of FOXO1 activity by SIRT1-mediated deacetylation weakening the intratumoral androgen autocrine function in glioblastoma","authors":"Yuanchi Cheng, Zhijun Xiao, Weijia Cai, Ting Zhou, Zhen Yang","doi":"10.1038/s41417-025-00880-1","DOIUrl":"10.1038/s41417-025-00880-1","url":null,"abstract":"Elevated levels of androgens in the brain accelerate tumor progression in patients with glioblastoma (GBM). Despite current research efforts concentrating on decreasing peripheral androgens to improve GBM prognosis, results have not met expectations. Herein, we aim to elucidate the source of increased androgen levels in the brains of GBM patients and investigate whether lowering it can improve the prognosis of GBM patients. The Elisa was employed to measure androgen levels. The effects of androgens on U87 cells were evaluated using CCK-8 assays, clone formation assays, wound healing assays, and migration/invasion assays. RNA sequencing, RT-qPCR and Western blotting were performed to assess the expression levels of steroid enzymes, tumor drug resistance, Sirt1, FOXO1genes and proteins. Co-immunoprecipitation (Co-IP) assays were conducted to investigate the interactions and acetylation levels between Sirt1 and FOXO1. Lentiviral transfection was utilized to establish stable cell lines. Furthermore, an in vivo murine subcutaneous tumor model was established to further confirm the role of Sirt1 in tumor progression. We found androgen levels in the cerebrospinal fluid of GBM patients were higher than in the periphery, contrasting with healthy individuals. Additionally, the steroid enzymes in GBM cells were upregulated. Reducing peripheral androgens compensatorily enhances GBM androgen synthesis capacity (CYP17A1, CYP11A1, SRD5A2) and chemo-resistance (ABCB11, BIRC3, FGF2, NRG1), while the levels of androgens in the brain remain consistently high. The above results indicate that the increased androgens in the brain of GBM patients are self-secreted. Further investigations demonstrate that the transcription factor FOXO1 in GBM is regulated by silent information regulator 1 (Sirt1) through deacetylation, leading to enhanced androgen synthesis capacity in vivo and in vitro. Overexpressing Sirt1 significantly lowers brain androgen levels and delays tumor progression in mouse models. Compared to conventional finasteran therapy, the targeted-Sirt1 results in lower brain androgen levels and smaller tumor volumes. Our findings provide evidence that the elevated androgens in the brain of GBM patients came from tumor autocrine. Overexpression of Sirt1 reduces FOXO1 acetylation, lowers androgen synthesis enzyme levels, and effectively decreases brain androgen levels, thereby delaying tumor progression.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 3","pages":"343-354"},"PeriodicalIF":4.8,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-025-00880-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143613402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging roles of prohibitins in cancer: an update","authors":"Yunliang Gao, Yuanyuan Tang","doi":"10.1038/s41417-025-00883-y","DOIUrl":"10.1038/s41417-025-00883-y","url":null,"abstract":"The prohibitin (PHB) family, including PHB1 and its homolog PHB2, is ubiquitously located in different cellular compartments and plays roles in fundamental cellular processes such as proliferation, differentiation, and apoptosis. Accumulating evidence has indicated that this family contributes to the development of numerous diseases in particular cancers. Aberrant expressions of PHBs can been observed in diverse types of human cancer. Depending on their cell compartment-specific attributes and interacting proteins, PHBs are tightly linked to almost all aspects of cancer biology and have distinct bidirectional functions of tumor-suppression or tumor-promotion. However, the roles of PHBs in cancer have yet to be fully characterized and understood. This review provides an updated overview of the pleiotropic effects of PHBs and emphasizes their characteristic roles in each cancer respectively, with the great expectation to identify potential targets for therapeutic approaches and promising molecular biomarkers for cancer diagnosis and prognostic monitor.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 4","pages":"357-370"},"PeriodicalIF":4.8,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhoutong Dai, Yao Si, Shengfeng Xiong, Ying Li, Jiaqi Ye, Qinglei Gao, Ding Ma, Xin Jin, Fei Li
{"title":"Chimeric Ad5/35 oncolytic adenovirus overcome preexisting neutralizing antibodies and enhance tumor targeting efficiency","authors":"Zhoutong Dai, Yao Si, Shengfeng Xiong, Ying Li, Jiaqi Ye, Qinglei Gao, Ding Ma, Xin Jin, Fei Li","doi":"10.1038/s41417-025-00884-x","DOIUrl":"10.1038/s41417-025-00884-x","url":null,"abstract":"KD01, a third-generation conditionally replicating adenovirus serotype 5 developed by our team, has approved by the China Center for Drug Evaluation (CDE) for Phase I clinical trials (NCT06552598). However, 60% seroprevalence of anti-Ad5 neutralizing antibodies is a major hurdle for Ad5-based oncolytic viruses. To address this issue, we developed oAd5/35-HF, a fourth-generation oncolytic adenovirus vector designed to enhance infection efficiency and evade pre-existing neutralizing antibodies (NABs). To achieve this, we introduced targeted capsid modifications, replacing hexon hypervariable regions (HVRs) 1 and 5 with those from adenovirus serotype 35 (Ad35), along with alterations to the fiber region. These combined modifications significantly improved infection efficiency, maintained high viral titers, and enabled the virus to resist NABs. This is the first report of replacing both the Ad5 hexon HVRs and fiber regions with those from Ad35 in an oncolytic adenovirus, resulting in potent antitumor activity across multiple cancer types, even in the presence of high NAB levels. The oAd5/35-HF backbone provides a versatile platform for developing new chimera oncolytic adenovirus and adenovirus vector-based vaccine.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 4","pages":"418-436"},"PeriodicalIF":4.8,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenhuan Li, Teng Ji, Jiaqi Ye, Shengfeng Xiong, Yao Si, Xiaohui Sun, Fei Li, Zhoutong Dai
{"title":"Ferroptosis enhances the therapeutic potential of oncolytic adenoviruses KD01 against cancer","authors":"Wenhuan Li, Teng Ji, Jiaqi Ye, Shengfeng Xiong, Yao Si, Xiaohui Sun, Fei Li, Zhoutong Dai","doi":"10.1038/s41417-025-00882-z","DOIUrl":"10.1038/s41417-025-00882-z","url":null,"abstract":"Oncolytic virotherapy has emerged as a promising strategy for cancer treatment by selectively targeting and lysing tumor cells. However, its efficacy is often limited in certain tumor types due to multiple factors. This study explores the combination of oncolytic adenoviruses with Erastin, a potent ferroptosis inducer, to enhance antitumor efficacy in oncolytic virus-insensitive cancer cell lines. In vitro experiments demonstrated that Erastin significantly increased the cytotoxicity of oncolytic virotherapy, leading to greater inhibition of cell proliferation and elevated rates of cell death compared to monotherapies. The combination treatment further promoted ferroptosis, as evidenced by increased reactive oxygen species (ROS) levels, enhanced lipid peroxidation, and disrupted redox homeostasis. RNA sequencing identified the downregulation of Dickkopf-1 (DKK1) as a key mediator of the enhanced ferroptotic effect. Restoring the expression of DKK1 partially mitigated the cytotoxic effects of the combination therapy, highlighting its crucial role in mediating the enhanced ferroptosis-induced oncolytic virotherapy efficacy. In vivo studies further validated these findings, demonstrating that the combined treatment significantly reduced tumor growth without inducing notable toxicity. This novel therapeutic approach has great potential to enhance the efficacy of oncolytic virotherapy in cancers resistant to oncolytic viruses by inducing ferroptosis. Further investigation in clinically relevant models is warranted to fully elucidate the underlying mechanisms and to optimize this combination strategy for potential clinical applications.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 4","pages":"403-417"},"PeriodicalIF":4.8,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-025-00882-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143540160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Takashi Iizuka, Azna Zuberi, Helen Wei, John S. Coon V, Melania Lidia Anton, Kadir Buyukcelebi, Mazhar Adli, Serdar E. Bulun, Ping Yin
{"title":"Therapeutic targeting of the tryptophan-kynurenine-aryl hydrocarbon receptor pathway with apigenin in MED12-mutant leiomyoma cells","authors":"Takashi Iizuka, Azna Zuberi, Helen Wei, John S. Coon V, Melania Lidia Anton, Kadir Buyukcelebi, Mazhar Adli, Serdar E. Bulun, Ping Yin","doi":"10.1038/s41417-025-00881-0","DOIUrl":"10.1038/s41417-025-00881-0","url":null,"abstract":"Approximately 77.4% of uterine leiomyomas carry MED12 gene mutations (mut-MED12), which are specifically associated with strikingly upregulated expression and activity of the tryptophan 2,3-dioxygenase (TDO2) enzyme, leading to increased conversion of tryptophan to kynureine. Kynurenine increases leiomyoma cell survival by activating the aryl hydrocarbon receptor (AHR). We used a leiomyoma-relevant model, in which a MED12 Gly44 mutation was knocked in by CRISPR in a human uterine myometrial smooth muscle (UtSM) cell line, in addition to primary leiomyoma cells from 26 patients to ascertain the mechanisms responsible for therapeutic effects of apigenin, a natural compound. Apigenin treatment significantly decreased cell viability, inhibited cell cycle progression, and induced apoptosis preferentially in mut-MED12 versus wild-type primary leiomyoma and UtSM cells. Apigenin not only blocked AHR action but also decreased TDO2 expression and kynurenine production, preferentially in mut-MED12 cells. Apigenin did not alter TDO2 enzyme activity. TNF and IL-1β, cytokines upregulated in leiomyoma, strikingly induced TDO2 expression levels via activating the NF-κB and JNK pathways, which were abolished by apigenin. Apigenin or a TDO2 inhibitor decreased UtSM cell viability induced by TNF/IL-1β. We provide proof-of-principle evidence that apigenin is a potential therapeutic agent for mut-MED12 leiomyomas.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 4","pages":"393-402"},"PeriodicalIF":4.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143536449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A conditionally replicative adenovirus vector containing the synNotch receptor gene for the treatment of muscle-invasive bladder cancer","authors":"Ruhan A, Hideto Ueki, Shunya Nishioka, Rion Yamazaki, Marina Maekawa, Koichi Kitagawa, Hideaki Miyake, Toshiro Shirakawa","doi":"10.1038/s41417-025-00879-8","DOIUrl":"10.1038/s41417-025-00879-8","url":null,"abstract":"Muscle-invasive bladder cancer (MIBC), a highly heterogeneous disease, shows genomic instability and a high mutation rate, making it difficult to treat. Recent studies revealed that cancer stem cells (CSCs) play a critical role in MIBC frequent recurrence and high morbidity. Previous research has shown that Cyclooxygenases-2 (COX-2) is particularly highly expressed in bladder cancer cells. In recent years, the development of oncolytic adenoviruses and their use in clinical trials have gained increased attention. In this study, we composed a conditionally replicative adenovirus vector (CRAd-synNotch) that carries the COX-2 promotor driving adenoviral E1 gene, the synNotch receptor therapeutic gene, and the Ad5/35 fiber gene. Activation of the COX-2 promoter gene causes replication only within COX-2 expressing cancer cells, thereby leading to tumor oncolysis. Also, CD44 and HIF signals contribute to cancer stemness and maintaining CSCs in bladder cancer, and the transduced synNotch receptor inhibits both CD44 and HIF signals simultaneously. We performed an in vivo study using a mouse xenograft model of T24 human MIBC cells and confirmed the significant antitumor activity of CRAd-synNotch. Our findings in this study warrant the further development of CRAd-synNotch for treating patients with MIBC.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 3","pages":"306-317"},"PeriodicalIF":4.8,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-025-00879-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143514788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of tumor-derived exosomal LncRNA in tumor metastasis","authors":"Zhile Yu, Jiali Fu, Vanya Mantareva, Ivica Blažević, Yusong Wu, Dianchang Wen, Tungalag Battulga, Yuqing Wang, Jianye Zhang","doi":"10.1038/s41417-024-00852-x","DOIUrl":"10.1038/s41417-024-00852-x","url":null,"abstract":"Tumor metastasis regulated by multiple complicated pathways is closely related to variations in the tumor microenvironment. Exosomes can regulate the tumor microenvironment through various mechanisms. Exosomes derived from tumor cells carry a variety of substances, including long non-coding RNAs (lncRNAs), play important roles in intercellular communication and act as critical determinants influencing tumor metastasis. In this review, we elaborate on several pivotal processes through which lncRNAs regulate tumor metastasis, including the regulation of epithelial‒mesenchymal transition, promotion of angiogenesis and lymphangiogenesis, enhancement of the stemness of tumor cells, and evasion of immune clearance. Additionally, we comprehensively summarized a diverse array of potential tumor-derived exosomal lncRNA biomarkers to facilitate accurate diagnosis and prognosis in a clinical setting.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 3","pages":"273-285"},"PeriodicalIF":4.8,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143514789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuning Mao, Yaohua Hu, Han Meng, Jing Qin, Qingling An, Caiqin Zhang, Chenbo Guo, Yong Zhao, Dengxu Tan, Xu Ge, Changhong Shi
{"title":"FXYD5 regulates gastric cancer cell metastasis and drug resistance by EMT modulation","authors":"Yuning Mao, Yaohua Hu, Han Meng, Jing Qin, Qingling An, Caiqin Zhang, Chenbo Guo, Yong Zhao, Dengxu Tan, Xu Ge, Changhong Shi","doi":"10.1038/s41417-025-00878-9","DOIUrl":"10.1038/s41417-025-00878-9","url":null,"abstract":"Gastric cancer (GC) is the third leading cause of cancer-related mortality and the fourth most prevalent malignancy globally. The high prevalence and mortality rates of GC are attributed to various factors, including drug resistance, local recurrence, and distant metastases. There is an urgent need to identify novel therapeutic targets for GC. Patient-derived xenografts (PDX) model offers unique advantages in maintaining the molecular heterogeneity and tumor microenvironment of primary tumors, offering significant advantages for the screening of personalized therapeutic targets. In this study, we established GC PDX models with metastatic potential through orthotopic transplantation and investigated the different gene expressions between primary and metastatic tumors using PCR-array analysis. We found that the metastatic tumors displayed elevated levels of FXYD domain-containing ion transport regulator 5 (FXYD5) compared to the primary tumors. Additionally, reducing FXYD5 expression was found to inhibit the invasion, metastasis, and proliferation of GC cells. Silencing FXYD5 also reversed the resistance of GC cells to doxorubicin and vincristine by modulating the epithelial–mesenchymal transition (EMT) process and the expression of multidrug resistance protein 2. This study indicates that FXYD5 is involved in GC progression and regulates chemotherapy resistance, suggesting its potential as a novel therapeutic target for the clinical treatment of GC.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 3","pages":"318-326"},"PeriodicalIF":4.8,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143472150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}