Cardamom synergizes with cisplatin against human osteosarcoma cells by mTOR-mediated autophagy.

IF 4.8 3区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sheng Li, Ziyun Li, Jiayu Wang, Xueqian Han, Lulu Zhang
{"title":"Cardamom synergizes with cisplatin against human osteosarcoma cells by mTOR-mediated autophagy.","authors":"Sheng Li, Ziyun Li, Jiayu Wang, Xueqian Han, Lulu Zhang","doi":"10.1038/s41417-025-00894-9","DOIUrl":null,"url":null,"abstract":"<p><p>Cisplatin (DDP), a frontline chemotherapeutic agent in osteosarcoma (OS) treatment, is frequently paired with other compounds to enhance its therapeutic potency. Cardamom (CAR), a natural flavonoid, exhibits significant inhibitory effects on human OS cells while minimizing toxic side effects. In this study, we combined CAR and DDP to treat OS, revealing that the DDP/CAR combination synergistically inhibits the growth of human OS cells in vitro and in vivo. Network pharmacological analysis indicated that mammalian target of rapamycin (mTOR) may be an important cross-target for DDP/CAR combination. Notably, this combined treatment significantly reduced mTOR phosphorylation and elevated autophagy levels within OS cells. At the mechanistic level, the DDP/CAR regimen enhanced apoptosis and compromised the viability of OS cells by triggering autophagy. This impact was attenuated by the use of the mTOR activator MHY and the autophagy inhibitor hydroxychloroquine (HCQ). Furthermore, in DDP-resistant cell lines, CAR was able to mitigate DDP resistance by bolstering autophagy levels. In general, our results suggest that CAR bolstering autophagy levels DDP against OS cells through the induction of mTOR-mediated autophagy.</p>","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41417-025-00894-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cisplatin (DDP), a frontline chemotherapeutic agent in osteosarcoma (OS) treatment, is frequently paired with other compounds to enhance its therapeutic potency. Cardamom (CAR), a natural flavonoid, exhibits significant inhibitory effects on human OS cells while minimizing toxic side effects. In this study, we combined CAR and DDP to treat OS, revealing that the DDP/CAR combination synergistically inhibits the growth of human OS cells in vitro and in vivo. Network pharmacological analysis indicated that mammalian target of rapamycin (mTOR) may be an important cross-target for DDP/CAR combination. Notably, this combined treatment significantly reduced mTOR phosphorylation and elevated autophagy levels within OS cells. At the mechanistic level, the DDP/CAR regimen enhanced apoptosis and compromised the viability of OS cells by triggering autophagy. This impact was attenuated by the use of the mTOR activator MHY and the autophagy inhibitor hydroxychloroquine (HCQ). Furthermore, in DDP-resistant cell lines, CAR was able to mitigate DDP resistance by bolstering autophagy levels. In general, our results suggest that CAR bolstering autophagy levels DDP against OS cells through the induction of mTOR-mediated autophagy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer gene therapy
Cancer gene therapy 医学-生物工程与应用微生物
CiteScore
10.20
自引率
0.00%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair. Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信