ALKBH5-mediated m6A regulates the alternative splicing events of SRSF10 in ovarian cancer.

IF 4.8 3区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Kexin Li, Yuqing Pei, Xin Dong, Yue Wu, Xiaoying Lou, Yiling Li, Shuang Liang, Yuxin Wu, Danfei Xu, Bin Li, Wei Cui
{"title":"ALKBH5-mediated m6A regulates the alternative splicing events of SRSF10 in ovarian cancer.","authors":"Kexin Li, Yuqing Pei, Xin Dong, Yue Wu, Xiaoying Lou, Yiling Li, Shuang Liang, Yuxin Wu, Danfei Xu, Bin Li, Wei Cui","doi":"10.1038/s41417-025-00898-5","DOIUrl":null,"url":null,"abstract":"<p><p>N6-methyladenosine (m6A) methylation was found to be involved in the tumorigenesis and development of ovarian cancer. Until now, it is not clear to identify the mechanism by m6A demethylase ALKBH5 affects RNA splicing in ovarian cancer. In this study, we examined ALKBH5 protein expression and m6A levels by immunohistochemistry and analyzed their correlation with clinical features and prognosis in patients with ovarian cancer. We identified the elevated expression of ALKBH5 and a general reduction in the level of m6A in ovarian cancer patients. In the ovarian cancer cell line A2780, ALKBH5 depletion was found using the siRNA strategy or the CRISPR/Cas9 knockout (KO) method, which significantly reduced the level of m6A and inhibited cell viability, proliferation, and migration. The MeRIP-seq and RNA-seq showed that ALKBH5-regulated m6A RNA modification mainly affects RNA splicing function in ovarian cancer cells. SRSF10 is a key target gene involved in alternative splicing regulation through ALKBH5-m6A. ALKBH5 knockdown resulted in increased retention of SRSF10 exon 5 and decreased expression of transcript SRSF10-211. In conclusion, the alternative splicing regulation effect by ALKBH5-mediated m6A suggests a novel promising approach for m6A modification in OC and provides novel insights into the mechanisms involved in ovarian cancer therapy.</p>","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41417-025-00898-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

N6-methyladenosine (m6A) methylation was found to be involved in the tumorigenesis and development of ovarian cancer. Until now, it is not clear to identify the mechanism by m6A demethylase ALKBH5 affects RNA splicing in ovarian cancer. In this study, we examined ALKBH5 protein expression and m6A levels by immunohistochemistry and analyzed their correlation with clinical features and prognosis in patients with ovarian cancer. We identified the elevated expression of ALKBH5 and a general reduction in the level of m6A in ovarian cancer patients. In the ovarian cancer cell line A2780, ALKBH5 depletion was found using the siRNA strategy or the CRISPR/Cas9 knockout (KO) method, which significantly reduced the level of m6A and inhibited cell viability, proliferation, and migration. The MeRIP-seq and RNA-seq showed that ALKBH5-regulated m6A RNA modification mainly affects RNA splicing function in ovarian cancer cells. SRSF10 is a key target gene involved in alternative splicing regulation through ALKBH5-m6A. ALKBH5 knockdown resulted in increased retention of SRSF10 exon 5 and decreased expression of transcript SRSF10-211. In conclusion, the alternative splicing regulation effect by ALKBH5-mediated m6A suggests a novel promising approach for m6A modification in OC and provides novel insights into the mechanisms involved in ovarian cancer therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer gene therapy
Cancer gene therapy 医学-生物工程与应用微生物
CiteScore
10.20
自引率
0.00%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair. Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信