Natural Product Reports最新文献

筛选
英文 中文
Hot off the press 热销中
IF 10.2 1区 化学
Natural Product Reports Pub Date : 2024-08-14 DOI: 10.1039/d4np90034k
{"title":"Hot off the press","authors":"","doi":"10.1039/d4np90034k","DOIUrl":"10.1039/d4np90034k","url":null,"abstract":"<div><p>A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as nitidane from <em>Heteromurus nitidus</em>.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Medium-sized peptides from microbial sources with potential for antibacterial drug development† 具有抗菌药物开发潜力的微生物来源中型肽。
IF 10.2 1区 化学
Natural Product Reports Pub Date : 2024-08-14 DOI: 10.1039/d4np00002a
{"title":"Medium-sized peptides from microbial sources with potential for antibacterial drug development†","authors":"","doi":"10.1039/d4np00002a","DOIUrl":"10.1039/d4np00002a","url":null,"abstract":"<div><p>Covering: 1993 to the end of 2022</p></div><div><p>As the rapid development of antibiotic resistance shrinks the number of clinically available antibiotics, there is an urgent need for novel options to fill the existing antibiotic pipeline. In recent years, antimicrobial peptides have attracted increased interest due to their impressive broad-spectrum antimicrobial activity and low probability of antibiotic resistance. However, macromolecular antimicrobial peptides of plant and animal origin face obstacles in antibiotic development because of their extremely short elimination half-life and poor chemical stability. Herein, we focus on medium-sized antibacterial peptides (MAPs) of microbial origin with molecular weights below 2000 Da. The low molecular weight is not sufficient to form complex protein conformations and is also associated to a better chemical stability and easier modifications. Microbially-produced peptides are often composed of a variety of non-protein amino acids and terminal modifications, which contribute to improving the elimination half-life of compounds. Therefore, MAPs have great potential for drug discovery and are likely to become key players in the development of next-generation antibiotics. In this review, we provide a detailed exploration of the modes of action demonstrated by 45 MAPs and offer a concise summary of the structure–activity relationships observed in these MAPs.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140670631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in the total synthesis of bis- and tris-indole alkaloids containing N-heterocyclic linker moieties 含有 N-杂环连接分子的双吲哚和三吲哚生物碱的全合成进展。
IF 10.2 1区 化学
Natural Product Reports Pub Date : 2024-08-14 DOI: 10.1039/d4np00012a
{"title":"Advances in the total synthesis of bis- and tris-indole alkaloids containing N-heterocyclic linker moieties","authors":"","doi":"10.1039/d4np00012a","DOIUrl":"10.1039/d4np00012a","url":null,"abstract":"<div><p>The past several years have seen an increase in the discovery and isolation of natural products of the indole alkaloid class. Bis- and tris-indole alkaloids are classes of natural products that have been shown to display diverse, potent biological activities. Of particular interest are bis- and tris-indole alkaloids containing N-heterocyclic linker moieties. It has been reported that more than 85% of biologically active compounds contain one or more heterocyclic moieties; of these, N-heterocycles have been identified as the most prevalent. The goal of this review is to provide a detailed overview of the recent advances in isolation and total synthesis of bis- and tris-indole alkaloids that contain N-heterocyclic linker moieties. The known biological activities of these natural products will also be discussed.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/np/d4np00012a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140652380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling up for success: from bioactive natural products to new medicines. 扩大规模,取得成功:从生物活性天然产品到新药。
IF 10.2 1区 化学
Natural Product Reports Pub Date : 2024-08-12 DOI: 10.1039/d4np00022f
Maximilian J Helf, Kathrin Buntin, Andrej Klančar, Michael Rust, Frank Petersen, Dominik Pistorius, Eric Weber, Joanne Wong, Philipp Krastel
{"title":"Scaling up for success: from bioactive natural products to new medicines.","authors":"Maximilian J Helf, Kathrin Buntin, Andrej Klančar, Michael Rust, Frank Petersen, Dominik Pistorius, Eric Weber, Joanne Wong, Philipp Krastel","doi":"10.1039/d4np00022f","DOIUrl":"https://doi.org/10.1039/d4np00022f","url":null,"abstract":"<p><p>Covering 1986 to presentNatural product drug discovery at Novartis has a long and successful history of delivering life saving medicines to millions of patients. In this viewpoint, we are presenting the tools we use and challenges we face as we advance natural products from early research into development and beyond. We are leveraging our collection of 90 000 microbial strains and 20 000 isolated natural products to find new medications in an interdisciplinary approach that requires expertise in microbiology, computational biology, synthetic biology, chemistry, and process development. Technological advances, particularly in genome engineering and data science have transformed our field, accelerating discovery and facilitating sustainable compound supply. Emerging new modalities such as antibody drug conjugates, radioligand therapies and xRNA-based medications offer new opportunities for natural product-derived drugs. By taking advantage of these new modalities and the most recent research technologies, natural products will significantly contribute to the medicines of the future.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: The ‘emodin family’ of fungal natural products–amalgamating a century of research with recent genomics-based advances 更正:真菌天然产物 "大黄素家族"--百年研究与最新基因组学进展的结合。
IF 10.2 1区 化学
Natural Product Reports Pub Date : 2024-08-09 DOI: 10.1039/D4NP90035A
Kate M. J. de Mattos-Shipley and Thomas J. Simpson
{"title":"Correction: The ‘emodin family’ of fungal natural products–amalgamating a century of research with recent genomics-based advances","authors":"Kate M. J. de Mattos-Shipley and Thomas J. Simpson","doi":"10.1039/D4NP90035A","DOIUrl":"10.1039/D4NP90035A","url":null,"abstract":"<p >Correction for ‘The ‘emodin family’ of fungal natural products–amalgamating a century of research with recent genomics-based advances’ by Kate M. J. de Mattos-Shipley <em>et al.</em>, <em>Nat. Prod. Rep.</em>, 2023, <strong>40</strong>, 174–201, https://doi.org/10.1039/D2NP00040G.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating the extent of adulteration of the popular herbs black cohosh, echinacea, elder berry, ginkgo, and turmeric - its challenges and limitations. 估算常用草药黑升麻、紫锥菊、接骨木莓、银杏和姜黄的掺假程度--其挑战和局限性。
IF 10.2 1区 化学
Natural Product Reports Pub Date : 2024-08-07 DOI: 10.1039/d4np00014e
Nilüfer Orhan, Stefan Gafner, Mark Blumenthal
{"title":"Estimating the extent of adulteration of the popular herbs black cohosh, echinacea, elder berry, ginkgo, and turmeric - its challenges and limitations.","authors":"Nilüfer Orhan, Stefan Gafner, Mark Blumenthal","doi":"10.1039/d4np00014e","DOIUrl":"10.1039/d4np00014e","url":null,"abstract":"<p><p>Covering: up to July 2023Botanical natural medicinal products and dietary supplements are utilized globally for their positive impacts on health and wellness. However, the effectiveness and safety of botanical products can be compromised by unintentional or intentional adulteration. The presence of adulterated botanical ingredients in the global market has been documented in the published literature but a key question, namely what the extent of adulteration is, remains to be answered. This review aims to estimate the prevalence of adulteration in preparations made from black cohosh rhizome, echinacea root or herb, elder berry, ginkgo leaf, and turmeric root/rhizome. According to the information provided in the 78 publications retrieved for this paper, 818 of 2995 samples were reported to be adulterated and/or mislabeled. Ginkgo leaf samples (<i>n</i> = 533) had the highest adulteration rate with 56.7%, followed by black cohosh rhizome (<i>n</i> = 322) samples with 42.2%, echinacea root/herb (<i>n</i> = 200) with 28.5%, elder berry (<i>n</i> = 695) with 17.1%, and turmeric root/rhizome (<i>n</i> = 1247) with 16.5%. Products sold as licensed or registered herbal medicines were found to have a lower risk of adulteration compared to products sold as dietary/food supplements. The data show that the adulteration rate substantially differs from one ingredient to the other. Due to the significant limitations of the available data upon which the estimated extent of adulteration is based, and the rapidly changing botanical dietary supplement market, conclusions from the five herbs examined in this publication cannot be applied to other botanicals traded in the global market. However, the data clearly show that a substantial portion of the botanical dietary supplements do not contain what is claimed on their labels.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant peptides – redefining an area of ribosomally synthesized and post-translationally modified peptides 植物肽--重新定义核糖体合成和翻译后修饰肽的领域。
IF 10.2 1区 化学
Natural Product Reports Pub Date : 2024-07-17 DOI: 10.1039/d3np00042g
{"title":"Plant peptides – redefining an area of ribosomally synthesized and post-translationally modified peptides","authors":"","doi":"10.1039/d3np00042g","DOIUrl":"10.1039/d3np00042g","url":null,"abstract":"<div><p>Covering 1965 to February 2024</p></div><div><p>Plants are prolific peptide chemists and are known to make thousands of different peptidic molecules. These peptides vary dramatically in their size, chemistry, and bioactivity. Despite their differences, all plant peptides to date are biosynthesized as ribosomally synthesized and post-translationally modified peptides (RiPPs). Decades of research in plant RiPP biosynthesis have extended the definition and scope of RiPPs from microbial sources, establishing paradigms and discovering new families of biosynthetic enzymes. The discovery and elucidation of plant peptide pathways is challenging due to repurposing and evolution of housekeeping genes as both precursor peptides and biosynthetic enzymes and due to the low rates of gene clustering in plants. In this review, we highlight the chemistry, biosynthesis, and function of the known RiPP classes from plants and recommend a nomenclature for the recent addition of BURP-domain-derived RiPPs termed burpitides. Burpitides are an emerging family of cyclic plant RiPPs characterized by macrocyclic crosslinks between tyrosine or tryptophan side chains and other amino acid side chains or their peptide backbone that are formed by copper-dependent BURP-domain-containing proteins termed burpitide cyclases. Finally, we review the discovery of plant RiPPs through bioactivity-guided, structure-guided, and gene-guided approaches.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cephalotane diterpenoids: structural diversity, biological activity, biosynthetic proposal, and chemical synthesis† 头状二萜:结构多样性、生物活性、生物合成建议和化学合成。
IF 10.2 1区 化学
Natural Product Reports Pub Date : 2024-07-17 DOI: 10.1039/d3np00067b
{"title":"Cephalotane diterpenoids: structural diversity, biological activity, biosynthetic proposal, and chemical synthesis†","authors":"","doi":"10.1039/d3np00067b","DOIUrl":"10.1039/d3np00067b","url":null,"abstract":"<div><p>Covering: up to the end of 2023</p></div><div><p>Cephalotane diterpenoids are a unique class of natural products exclusive to the genus <em>Cephalotaxus</em>, featuring a rigid 7,6,5,6-fused tetracyclic architecture. The study of cephalotanes dates back to the 1970s, when harringtonolide (<strong>1</strong>), a <em>Cephalotaxus</em> troponoid with a peculiar norditerpenoid carbon skeleton, was first discovered. In recent years, prototype C<sub>20</sub> diterpenoids proposed as cephalotane were disclosed, which triggered intense studies on this diterpenoid family. To date, a cumulative total of 105 cephalotane diterpenoids with great structural diversity and biological importance have been isolated. In addition, significant advances have been made in the field of total synthesis and biosynthesis of cephalotanes in recent years. This review provides a complete overview of the chemical structures, bioactivities, biosynthetic aspects, and completed total synthesis of all the isolated cephalotane diterpenoids, which will help guide future research on this class of compounds.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140118133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opportunities and challenges of RiPP-based therapeutics 基于 RiPP 的疗法的机遇与挑战。
IF 10.2 1区 化学
Natural Product Reports Pub Date : 2024-07-17 DOI: 10.1039/d3np00057e
{"title":"Opportunities and challenges of RiPP-based therapeutics","authors":"","doi":"10.1039/d3np00057e","DOIUrl":"10.1039/d3np00057e","url":null,"abstract":"<div><p>Covering: up to 2024</p></div><div><p>Ribosomally synthesised and post-translationally modified peptides (RiPPs) comprise a substantial group of peptide natural products exhibiting noteworthy bioactivities ranging from antiinfective to anticancer and analgesic effects. Furthermore, RiPP biosynthetic pathways represent promising production routes for complex peptide drugs, and the RiPP technology is well-suited for peptide engineering to produce derivatives with specific functions. Thus, RiPP natural products possess features that render them potentially ideal candidates for drug discovery and development. Nonetheless, only a small number of RiPP-derived compounds have successfully reached the market thus far. This review initially outlines the therapeutic opportunities that RiPP-based compounds can offer, whilst subsequently discussing the limitations that require resolution in order to fully exploit the potential of RiPPs towards the development of innovative drugs.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/np/d3np00057e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in the total synthesis of galantamine, a natural medicine for Alzheimer's disease 治疗阿尔茨海默病的天然药物加兰他敏全合成的最新进展。
IF 10.2 1区 化学
Natural Product Reports Pub Date : 2024-07-17 DOI: 10.1039/d4np00001c
{"title":"Recent advances in the total synthesis of galantamine, a natural medicine for Alzheimer's disease","authors":"","doi":"10.1039/d4np00001c","DOIUrl":"10.1039/d4np00001c","url":null,"abstract":"<div><p>Covering: 2006 to 2023</p></div><div><p>(−)-Galantamine is a natural product with distinctive structural features and potent inhibitory activity against acetylcholine esterase (AChE). It is clinically approved for the treatment of Alzheimer's disease. The clinical significance and scarcity of this natural product have prompted extensive and ongoing efforts towards the chemical synthesis of this challenging tetracyclic structure. The objective of this review is to summarize and discuss recent progress in the total synthesis of galantamine from 2006 to 2023. The contents are organized according to the synthetic strategies for the construction of the quaternary center. Key features of each synthesis have been highlighted, followed by a summary and outlook at the end.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/np/d4np00001c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140048210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信