Microbial engineering for natural and unnatural glycosaminoglycans biosynthesis.

IF 10.6 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chunlei Zhao, Jinyi Qian, Xiulai Chen
{"title":"Microbial engineering for natural and unnatural glycosaminoglycans biosynthesis.","authors":"Chunlei Zhao, Jinyi Qian, Xiulai Chen","doi":"10.1039/d5np00043b","DOIUrl":null,"url":null,"abstract":"<p><p>Covering: up to 2025Microbial synthesis of glycosaminoglycans (GAGs) facilitates sustainable biomanufacturing using cost-effective carbon feedstocks. This transformative framework is driven by three core innovations: <i>de novo</i> GAGs biosynthesis, sulfation engineering, and new-to-nature GAGs analogs creation. Despite these advances, critical challenges hinder industrial-scale efficiency, such as suboptimal distribution of metabolic flux, insufficient sulfation environments, and host incompatibility with unnatural analogs. In this review, we present a systematic analysis of microbial hosts, biosynthetic pathways, and microbial engineering strategies for GAGs production. We first describe how strategic host optimization and pathway manipulation can tap the full potential of microorganisms for efficient GAGs biosynthesis. Then, we analyze the development of microbial cell factories (MCFs) for GAGs biosynthesis from the simple pathway transplantation to systemic <i>de novo</i> construction of metabolic systems, thereby establishing programmable platforms to surpass natural biosynthesis limits. Next, we present a tripartite engineering framework for GAGs sulfation that integrates precursor synthesis modules, sulfate donor accumulation systems, and sulfotransferase networks, thereby progressing sulfation control from biomimetic mechanisms to programmable artificial systems. Further, we discuss the microbial synthesis of new-to-nature GAGs analogs through the incorporation of unnatural precursors or the reprogramming of natural precursors, thereby enabling MCFs to construct non-canonical glycopolymers with designed function. Finally, we prospect the development of multifunctional customized MCFs to drive breakthroughs in industrial-scale GAGs bioproduction.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5np00043b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Covering: up to 2025Microbial synthesis of glycosaminoglycans (GAGs) facilitates sustainable biomanufacturing using cost-effective carbon feedstocks. This transformative framework is driven by three core innovations: de novo GAGs biosynthesis, sulfation engineering, and new-to-nature GAGs analogs creation. Despite these advances, critical challenges hinder industrial-scale efficiency, such as suboptimal distribution of metabolic flux, insufficient sulfation environments, and host incompatibility with unnatural analogs. In this review, we present a systematic analysis of microbial hosts, biosynthetic pathways, and microbial engineering strategies for GAGs production. We first describe how strategic host optimization and pathway manipulation can tap the full potential of microorganisms for efficient GAGs biosynthesis. Then, we analyze the development of microbial cell factories (MCFs) for GAGs biosynthesis from the simple pathway transplantation to systemic de novo construction of metabolic systems, thereby establishing programmable platforms to surpass natural biosynthesis limits. Next, we present a tripartite engineering framework for GAGs sulfation that integrates precursor synthesis modules, sulfate donor accumulation systems, and sulfotransferase networks, thereby progressing sulfation control from biomimetic mechanisms to programmable artificial systems. Further, we discuss the microbial synthesis of new-to-nature GAGs analogs through the incorporation of unnatural precursors or the reprogramming of natural precursors, thereby enabling MCFs to construct non-canonical glycopolymers with designed function. Finally, we prospect the development of multifunctional customized MCFs to drive breakthroughs in industrial-scale GAGs bioproduction.

天然和非天然糖胺聚糖生物合成的微生物工程。
覆盖:到2025年微生物合成糖胺聚糖(GAGs)促进可持续生物制造使用具有成本效益的碳原料。这一变革性框架由三个核心创新驱动:全新的GAGs生物合成、磺化工程和全新的GAGs类似物创造。尽管取得了这些进展,但关键的挑战阻碍了工业规模的效率,例如代谢通量的次优分布、硫酸酸化环境不足以及宿主与非天然类似物的不相容性。在这篇综述中,我们系统地分析了微生物宿主、生物合成途径和生产gag的微生物工程策略。我们首先描述了战略性宿主优化和途径操纵如何利用微生物的全部潜力进行高效的gag生物合成。然后,我们分析了微生物细胞工厂(mcf)用于GAGs生物合成的发展,从简单的途径移植到代谢系统的系统性从头构建,从而建立了超越自然生物合成极限的可编程平台。接下来,我们提出了一个集成前体合成模块、硫酸盐供体积累系统和硫转移酶网络的GAGs磺化的三方工程框架,从而将磺化控制从仿生机制推进到可编程的人工系统。此外,我们讨论了微生物通过引入非天然前体或对天然前体进行重编程来合成新的天然gag类似物,从而使mcf能够构建具有设计功能的非规范糖共聚物。最后,我们展望了多功能定制mcf的发展,以推动工业规模的gag生物生产的突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Product Reports
Natural Product Reports 化学-生化与分子生物学
CiteScore
21.20
自引率
3.40%
发文量
127
审稿时长
1.7 months
期刊介绍: Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis. With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results. NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信