Esteban Charria-Girón, Joseph Tchamgoue, Marc Stadler, Yasmina Marin-Felix
{"title":"Coprophilous fungi in the search for new antimicrobials and other beneficial natural products.","authors":"Esteban Charria-Girón, Joseph Tchamgoue, Marc Stadler, Yasmina Marin-Felix","doi":"10.1039/d5np00015g","DOIUrl":null,"url":null,"abstract":"<p><p>Covering: up to 2025Microbial interactions involve complex processes shaped by their ecological contexts. Herbivore animal dung denotes an interesting ecological niche for the study of interorganism communication and competition mediated by small molecules. Coprophilous organisms, which inhabit or are associated with animal dung, have developed resourceful defense mechanisms to survive in this competitive environment. Fungi, in particular, are renowned for their ability to produce biologically active secondary metabolites, a chemical arsenal that fosters successful colonization of the dung substrate. With recent advancements in OMICs technologies and our extensive knowledge of coprophilous fungi diversity, we can now delve into the biosynthetic machinery of these organisms and explore the opportunities they offer for discovering new antimicrobials and other beneficial natural products. This review explores the potential of coprophilous fungi in the context of the intricate microbial dynamics of this substrate, particularly the biosynthetic and chemical diversity that make this environment especially promising for natural product discovery. Notably, taxa spanning multiple families within the Sordariomycetes, Dothideomycetes, and Eurotiomycetes have been reported to thrive in dung, highlighting their potential as a reservoir of unique metabolic capabilities. Indeed, 198 secondary metabolites, derived from polyketide, amino acid derived, terpene, and hybrid pathways, have been reported from these fungi, underscoring the remarkable scope of their biosynthetic potential.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5np00015g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Covering: up to 2025Microbial interactions involve complex processes shaped by their ecological contexts. Herbivore animal dung denotes an interesting ecological niche for the study of interorganism communication and competition mediated by small molecules. Coprophilous organisms, which inhabit or are associated with animal dung, have developed resourceful defense mechanisms to survive in this competitive environment. Fungi, in particular, are renowned for their ability to produce biologically active secondary metabolites, a chemical arsenal that fosters successful colonization of the dung substrate. With recent advancements in OMICs technologies and our extensive knowledge of coprophilous fungi diversity, we can now delve into the biosynthetic machinery of these organisms and explore the opportunities they offer for discovering new antimicrobials and other beneficial natural products. This review explores the potential of coprophilous fungi in the context of the intricate microbial dynamics of this substrate, particularly the biosynthetic and chemical diversity that make this environment especially promising for natural product discovery. Notably, taxa spanning multiple families within the Sordariomycetes, Dothideomycetes, and Eurotiomycetes have been reported to thrive in dung, highlighting their potential as a reservoir of unique metabolic capabilities. Indeed, 198 secondary metabolites, derived from polyketide, amino acid derived, terpene, and hybrid pathways, have been reported from these fungi, underscoring the remarkable scope of their biosynthetic potential.
期刊介绍:
Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis.
With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results.
NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.