Giuseppe Longobardi, Thomas Lee Moore, Claudia Conte, Francesca Ungaro, Ronit Satchi-Fainaro, Fabiana Quaglia
{"title":"Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy.","authors":"Giuseppe Longobardi, Thomas Lee Moore, Claudia Conte, Francesca Ungaro, Ronit Satchi-Fainaro, Fabiana Quaglia","doi":"10.1002/wnan.1990","DOIUrl":"10.1002/wnan.1990","url":null,"abstract":"<p><p>Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 5","pages":"e1990"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing-Yang Zhang, Yun-He Su, Xu Wang, Xueqing Yao, Jin-Zhi Du
{"title":"Recent Progress on Nanomedicine-Mediated Repolarization of Tumor-Associated Macrophages for Cancer Immunotherapy.","authors":"Jing-Yang Zhang, Yun-He Su, Xu Wang, Xueqing Yao, Jin-Zhi Du","doi":"10.1002/wnan.2001","DOIUrl":"https://doi.org/10.1002/wnan.2001","url":null,"abstract":"<p><p>Tumor-associated macrophages (TAMs) constitute the largest number of immune cells in the tumor microenvironment (TME). They play an essential role in promoting tumor progression and metastasis, which makes them a potential therapeutic target for cancer treatment. TAMs are usually divided into two categories: pro-tumoral M2-like TAMs and antitumoral M1 phenotypes at either extreme. The reprogramming of M2-like TAMs toward a tumoricidal M1 phenotype is of particular interest for the restoration of antitumor immunity in cancer immunotherapy. Notably, nanomedicines have shown great potential for cancer therapy due to their unique structures and properties. This review will briefly describe the biological features and roles of TAMs in tumor, and then discuss recent advances in nanomedicine-mediated repolarization of TAMs for cancer immunotherapy. Finally, perspectives on nanomedicine-mediated repolarization of TAMs for effective cancer immunotherapy are also presented.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 5","pages":"e2001"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Versatile Approaches of Quantum Dots in Biosensing and Imaging.","authors":"Daphika S Dkhar, Rohini Kumari, Vinay Patel, Ananya Srivastava, Rajendra Prasad, Rohit Srivastava, Pranjal Chandra","doi":"10.1002/wnan.1998","DOIUrl":"https://doi.org/10.1002/wnan.1998","url":null,"abstract":"<p><p>Cancer is considered a formidable global health threat, despite substantial strides in diagnosis, detection, and therapeutic strategies. Remarkable progress has been achieved in these realms, yet the survival rates for cancer patients have persisted at suboptimal levels over decades. Acknowledging the need to address the ongoing challenges in cancer survival rates, research efforts are being made to push the boundaries of innovation in diagnostic techniques, bioimaging, and drug delivery technologies. Over the past few years, nano(bio)technology-based approaches have been applied for biosensing and imaging applications to detect biochemical substances in various matrices. Among various nanoengineered particulates, quantum dots (QDs) have been recognized as versatile agents for these applications. QDs, often called artificial atoms, are characterized by the remarkable optical and electrical features which are essential for cytosensing, localized bioimaging and therapeutics. Here in this review, we have discussed various QDs as sensitive and selective agents for precise sensing and imaging of cancer cells. Both electrochemical and optical approaches have been used to describe the cytosensing detection methods. Furthermore, the bioimaging of malignant tumor cells and the drug delivery with therapeutic responses of QDs have also been highlighted. This review also lists the several kinds of QDs that are frequently used for such kinds of applications, such as carbon, graphene, zinc, and other types of hybrid-based QDs. Finally, to shed insight on prospective research, the advantages and potential of QDs are also highlighted. In this article, we also emphasize the limitations and address the difficulties associated with QDs in clinical applications in order to provide insights for potential solutions.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 5","pages":"e1998"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ligong Yuan, Haoran Ji, Yang Cao, Hang Yi, Qihao Leng, Jie Zhou, Xinyu Mei
{"title":"Exosomes in esophageal cancer: Promising nanocarriers in cancer progression, diagnosis, prognosis, and therapy.","authors":"Ligong Yuan, Haoran Ji, Yang Cao, Hang Yi, Qihao Leng, Jie Zhou, Xinyu Mei","doi":"10.1002/wnan.1989","DOIUrl":"https://doi.org/10.1002/wnan.1989","url":null,"abstract":"<p><p>Esophageal cancer (EC) is one of the most fatal cancers all over the world. Sensitive detection modalities for early-stage EC and efficient treatment methods are urgently needed for the improvement of the prognosis of EC. Exosomes are small vesicles for intercellular communication, mediating many biological responses including cancer progression, which are not only promising biomarkers for diagnosis and prognosis but also therapeutic tools for EC. This review provides an overview of the relationships between exosomes and EC progression, as well as the application of exosomes in the diagnosis, prognosis, and treatment of EC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 5","pages":"e1989"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanotechnology for Targeted Inflammatory Bowel Disease Therapy: Challenges and Opportunities.","authors":"Meng-Tzu Weng, Chia-Yueh Hsiung, Shu-Chen Wei, Yunching Chen","doi":"10.1002/wnan.1999","DOIUrl":"https://doi.org/10.1002/wnan.1999","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is a complex and recurring inflammatory disorder that affects the gastrointestinal tract and is influenced by genetic predisposition, immune dysregulation, the gut microbiota, and environmental factors. Advanced therapies, such as biologics and small molecules, target diverse immune pathways to manage IBD. Nanoparticle (NP)-based drugs have emerged as effective tools, offering controlled drug release and targeted delivery. This review highlights NP modifications for anti-inflammatory purposes, utilizing changes such as those in size, charge, redox reactions, and ligand-receptor interactions in drug delivery systems. By using pathological and microenvironmental cues to guide NP design, precise targeting can be achieved. In IBD, a crucial aspect of NP intervention is targeting specific types of cells, such as immune and epithelial cells, to address compromised intestinal barrier function and reduce overactive immune responses. This review also addresses current challenges and future prospects, with the goal of advancing the development of NP-mediated strategies for IBD treatment.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 5","pages":"e1999"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanoscale Radiotheranostics for Cancer Treatment: From Bench to Bedside.","authors":"Xiaodan Jiao, Hao Hong, Weibo Cai","doi":"10.1002/wnan.2006","DOIUrl":"10.1002/wnan.2006","url":null,"abstract":"<p><p>In recent years, the application of radionuclides-containing nanomaterials in cancer treatment has garnered widespread attention. The diversity of nanomaterials allows researchers to selectively combine them with appropriate radionuclides for biomedical purposes, addressing challenges faced by peptides, small molecules, or antibodies used for radionuclide labeling. However, with advantages come challenges, and nanoradionuclides still encounter significant issues during clinical translation. This review summarized the recent progress of nanosized radionuclides for cancer treatment or diagnosis. The discussion began with representative radionuclides and the methods of incorporating them into nanomaterial structures. Subsequently, new combinations of nanomaterials and radionuclides, along with their applications, were introduced to demonstrate their future trends. The benefits of nanoradionuclides included optimized pharmacokinetic properties, enhanced disease-targeting efficacy, and synergistic application with other treatment techniques. Besides, the basic rule of this section was to summarize how these nanoradionuclides can truly impact the diagnosis and therapy of various cancer types. In the last part, the focus was devoted to the nanoradionuclides currently applicable in clinics and how to address the existing issues and problems based on our knowledge.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 5","pages":"e2006"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486289/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanotechnology-Assisted CAR-T-Cell Therapy for Tumor Treatment.","authors":"Yixin Wang, Allie Barrett, Quanyin Hu","doi":"10.1002/wnan.2005","DOIUrl":"https://doi.org/10.1002/wnan.2005","url":null,"abstract":"<p><p>The adoptive transfer of T cells redirected by chimeric antigen receptors (CARs) has made a dramatic breakthrough in defeating hematological malignancies. However, in solid tumor treatment, CAR-T-cell therapy has attained limited therapeutic benefits due to insufficient infiltration and expansion, rapidly diminishing function following adoptive transfer, and severe life-threatening toxicities. To address these challenges, advancements in nanotechnology have utilized innovative approaches to devise stronger CAR-T cells with reduced toxicity and enhanced anti-tumor activity. Equipping CAR-T cells with multifunctional nanoparticles can abrogate immunosuppressive signaling in the tumor area, augment the functions of CAR-T cells, and mitigate their toxicity against normal tissues. Additionally, nanoparticle-mediated CAR-T-cell programming has the potential to optimize manufacturing and lower the cost for the broader implementation of CAR-T-cell therapy. In this review, we introduce the obstacles to be surmounted in CAR-T-cell therapy, highlight the nanotechnology-based strategies that aim to enrich the therapeutic applications of CAR-T-cell therapy, and envision the prospect of nanoparticle-assisted CAR-T-cell therapy.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 5","pages":"e2005"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strategies for Organ-Targeted mRNA Delivery by Lipid Nanoparticles.","authors":"Hangping Liao, Jing Liao, Ling Zeng, Xinxiu Cao, Hui Fan, Jinjin Chen","doi":"10.1002/wnan.2004","DOIUrl":"https://doi.org/10.1002/wnan.2004","url":null,"abstract":"<p><p>Messenger RNA (mRNA) technology has rapidly evolved, significantly impacting various therapeutic applications, including vaccines, protein replacement, and gene editing. Lipid nanoparticles (LNPs) have emerged as a pivotal nonviral vector for mRNA delivery, crucial for organ-targeted therapies. Despite their success, most LNP formulations predominantly target the liver, limiting their use in nonliver diseases. This review explores strategies to achieve organ-specific mRNA delivery using LNPs, including the discovery of new lipid structures, modification of targeting ligands, incorporation of additional components, and optimization of LNP formulations. These advancements aim to enhance the precision and efficacy of mRNA therapeutics across a broader range of diseases.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 5","pages":"e2004"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangyu Jiao, Xi He, Shugang Qin, Xiaoling Yin, Tingting Song, Xing Duan, Haixing Shi, Shanhui Jiang, Yupei Zhang, Xiangrong Song
{"title":"Insights into the formulation of lipid nanoparticles for the optimization of mRNA therapeutics.","authors":"Xiangyu Jiao, Xi He, Shugang Qin, Xiaoling Yin, Tingting Song, Xing Duan, Haixing Shi, Shanhui Jiang, Yupei Zhang, Xiangrong Song","doi":"10.1002/wnan.1992","DOIUrl":"10.1002/wnan.1992","url":null,"abstract":"<p><p>mRNA-based therapeutics increasingly demonstrate significant potential in treating various diseases, including infectious diseases, cancers, and genetic disorders. Effective delivery systems are crucial for advancing mRNA therapeutics. Lipid nanoparticles (LNPs) serve as an excellent carrier, widely validated for their safety and tolerability in commercially available mRNA vaccines. Standard LNPs typically consist of four components: ionizable lipids (ILs), helper lipids, cholesterol, and polyethylene glycol-lipids (PEG-lipids), with the structural design of ILs gradually becoming a focal point of research interest. The chemical structures and formulations of the other components also significantly affect the delivery efficiency, targeting specificity, and stability of LNPs. The complex formulations of LNPs may hinder the clinical transformation of mRNA therapeutics and have raised widespread concerns about their safety. This review aims to summarize the progress of LNPs-based mRNA therapeutics in clinical trials, focusing on adverse effects that occurred during these trials. It also discusses representative innovations in LNP components, highlighting challenges and potential ways in this research field. We firmly believe this review will promote further improvements and designs of LNP compositions to optimize mRNA therapeutics. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 5","pages":"e1992"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An overview of lipid constituents in lipid nanoparticle mRNA delivery systems.","authors":"Shiqi Wu, Lixin Lin, Lu Shi, Shuai Liu","doi":"10.1002/wnan.1978","DOIUrl":"https://doi.org/10.1002/wnan.1978","url":null,"abstract":"<p><p>mRNA therapeutics have shown great potential for a broad spectrum of disease treatment. However, the challenges of mRNA's inherent instability and difficulty in cellular entry have hindered its progress in the biomedical field. To address the cellular barriers and deliver mRNA to cells of interest, various delivery systems are designed. Among these, lipid nanoparticles (LNPs) stand out as the most extensively used mRNA delivery systems, particularly following the clinical approvals of corona virus disease 2019 (COVID-19) mRNA vaccines. LNPs are comprised of ionizable cationic lipids, phospholipids, cholesterol, and polyethylene glycol derived lipids (PEG-lipids). In this review, we primarily summarize the recent advancements of the LNP mRNA delivery technology, focusing on the structures of four lipid constituents and their biomedical applications. We delve into structure-activity relationships of the lipids, while also exploring the future prospects and challenges in developing more efficacious mRNA delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 4","pages":"e1978"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}