Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology最新文献

筛选
英文 中文
Recent Advances in Wearable Sweat Sensor Development.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2025-01-01 DOI: 10.1002/wnan.70006
Tao Zhang, Giraso Keza Monia Kabandana, John A Terrell, Hui Chen, Chengpeng Chen
{"title":"Recent Advances in Wearable Sweat Sensor Development.","authors":"Tao Zhang, Giraso Keza Monia Kabandana, John A Terrell, Hui Chen, Chengpeng Chen","doi":"10.1002/wnan.70006","DOIUrl":"https://doi.org/10.1002/wnan.70006","url":null,"abstract":"<p><p>Wearable sweat sensors for detecting biochemical markers have emerged as a transformative research area, with the potential to revolutionize disease diagnosis and human health monitoring. Since 2016, a substantial body of pioneering and translational work on sweat biochemical sensors has been reported. This review aims to provide a comprehensive summary of the current state-of-the-art in the field, offering insights and perspectives on future developments. The focus is on wearable microfluidic platforms for sweat collection and delivery and the analytical chemistry applicable to wearable devices. Various microfluidic technologies, including those based on synthetic polymers, paper, textiles, and hydrogels, are discussed alongside diverse detection methods such as electrochemistry and colorimetry. Both the advantages and current limitations of these technologies are critically examined. The review concludes with our perspectives on the future of wearable sweat sensors, with the goal of inspiring new ideas, innovations, and technical advancements to further the development and practical application of these devices in promoting human health.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"17 1","pages":"e70006"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic Nanomaterials Based on Peptide In Situ Self-Assembly for Immunotherapy Applications.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2025-01-01 DOI: 10.1002/wnan.70005
Zhuan Wen, Zhang-Zhi Song, Ming-Ze Cai, Ni-Yuan Zhang, Hao-Ze Li, Yang Yang, Qian-Ting Wang, Muhammad Hamza Ghafoor, Hong-Wei An, Hao Wang
{"title":"Biomimetic Nanomaterials Based on Peptide In Situ Self-Assembly for Immunotherapy Applications.","authors":"Zhuan Wen, Zhang-Zhi Song, Ming-Ze Cai, Ni-Yuan Zhang, Hao-Ze Li, Yang Yang, Qian-Ting Wang, Muhammad Hamza Ghafoor, Hong-Wei An, Hao Wang","doi":"10.1002/wnan.70005","DOIUrl":"https://doi.org/10.1002/wnan.70005","url":null,"abstract":"<p><p>Cancer remains the leading cause of patient death worldwide and its incidence continues to rise. Immunotherapy is rapidly developing due to its significant differences in the mechanism of action from conventional radiotherapy and targeted antitumor drugs. In the past decades, many biomaterials have been designed and prepared to construct therapeutic platforms that modulate the immune system against cancer. Immunotherapeutic platforms utilizing biomaterials can markedly enhance therapeutic efficacy by optimizing the delivery of therapeutic agents, minimizing drug loss during circulation, and amplifying immunomodulatory effects. The intricate physiological barriers of tumors, coupled with adverse immune environments such as inadequate infiltration, off-target effects, and immunosuppression, have emerged as significant obstacles impeding the effectiveness of oncology drug therapy. However, most of the current studies are devoted to the development of complex immunomodulators that exert immunomodulatory functions by loading drugs or adjuvants, ignoring the complex physiological barriers and adverse immune environments of tumors. Compared with conventional biomaterials, biomimetic nanomaterials based on peptide in situ self-assembly with excellent functional characteristics of biocompatibility, biodegradability, and bioactivity have emerged as a novel and effective tool for cancer immunotherapy. This article presents a comprehensive review of the latest research findings on biomimetic nanomaterials based on peptide in situ self-assembly in tumor immunotherapy. Initially, we categorize the structural types of biomimetic peptide nanomaterials and elucidate their intrinsic driving forces. Subsequently, we delve into the in situ self-assembly strategies of these peptide biomimetic nanomaterials, highlighting their advantages in immunotherapy. Furthermore, we detail the applications of these biomimetic nanomaterials in antigen presentation and modulation of the immune microenvironment. In conclusion, we encapsulate the challenges and prospective developments of biomimetic nanomaterials based on peptide in situ self-assembly for clinical translation in immunotherapy.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"17 1","pages":"e70005"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143082969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulmonary Delivery of Nonviral Nucleic Acid-Based Vaccines With Spotlight on Gold Nanoparticles. 以金纳米粒子为重点的非病毒核酸疫苗的肺部递送
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2025-01-01 DOI: 10.1002/wnan.70000
Carolina Araujo Cirne, Marianna Foldvari
{"title":"Pulmonary Delivery of Nonviral Nucleic Acid-Based Vaccines With Spotlight on Gold Nanoparticles.","authors":"Carolina Araujo Cirne, Marianna Foldvari","doi":"10.1002/wnan.70000","DOIUrl":"10.1002/wnan.70000","url":null,"abstract":"<p><p>Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications. This review summarizes the challenges and the approaches that have been carried out to optimize the delivery of nucleic acids through the pulmonary route for vaccination purposes in recent years, with a spotlight on gold nanoparticles (AuNPs). Nonviral delivery systems have been widely explored, and AuNPs with their unique properties are emerging as promising tools for nucleic acid vaccines due to surface functionalization with mucus-penetrating polymers and targeting moieties that can bypass the barriers in pulmonary delivery and successfully deliver nucleic acids to the cells of interest. However, while promising, several challenges remain including selectively overcoming the lungs' immunological surveillance and adhesive mucus.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"17 1","pages":"e70000"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymers for mRNA Delivery. 用于mRNA传递的聚合物。
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2025-01-01 DOI: 10.1002/wnan.70002
Hui Wang, Yiyun Cheng
{"title":"Polymers for mRNA Delivery.","authors":"Hui Wang, Yiyun Cheng","doi":"10.1002/wnan.70002","DOIUrl":"https://doi.org/10.1002/wnan.70002","url":null,"abstract":"<p><p>mRNA delivery has emerged as a transformative approach in biotechnology and medicine, offering a versatile platform for the development of novel therapeutics. Unlike traditional small molecule drugs or protein-based biologics, mRNA therapeutics have the unique ability to direct cells to generate therapeutic proteins, allowing for precise modulation of biological processes. The delivery of mRNA into target cells is a critical step in realizing the therapeutic potential of this technology. In this review, our focus is on the latest advancements in designing functional polymers to achieve efficient mRNA delivery. Biodegradable polymers and low molecular weight polymers in addressing the balance in mRNA binding and release are summarized. Benefiting from the excellent performance of lipid nanoparticles in mRNA delivery, polymer/lipid hybrid nanostructures are also included. Finally, the challenges and future prospects in the development of polymer-based mRNA delivery systems are discussed.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"17 1","pages":"e70002"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoparticle Contrast Agents for Photon-Counting Computed Tomography: Recent Developments and Future Opportunities.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2025-01-01 DOI: 10.1002/wnan.70004
Laxman Devkota, Rohan Bhavane, Cristian T Badea, Eric A Tanifum, Ananth V Annapragada, Ketan B Ghaghada
{"title":"Nanoparticle Contrast Agents for Photon-Counting Computed Tomography: Recent Developments and Future Opportunities.","authors":"Laxman Devkota, Rohan Bhavane, Cristian T Badea, Eric A Tanifum, Ananth V Annapragada, Ketan B Ghaghada","doi":"10.1002/wnan.70004","DOIUrl":"10.1002/wnan.70004","url":null,"abstract":"<p><p>The clinical availability of photon-counting computed tomography (PCCT) has ushered in a new era of CT imaging. Spectral imaging coupled with superior contrast resolution, and ultrahigh spatial resolution (200 μm) offered by PCCT has the potential to revolutionize value-driven imaging. The potential of multicolor PCCT has generated excitement, and renewed interest, in novel contrast agent development for comprehensive disease interrogation, prediction and monitoring of treatment outcomes. Nanoparticles provide a versatile and powerful platform for the development of next generation contrast agents for spectral PCCT. In this article, we review recent developments and use of nanoparticle contrast agents for PCCT. We also discuss future research and translational opportunities for nanoparticle-based CT contrast agents enabled by the advent of PCCT and describe key considerations for their clinical translation.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"17 1","pages":"e70004"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874078/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iron-Based Nanomaterials for Modulating Tumor Microenvironment. 调节肿瘤微环境的铁基纳米材料。
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2025-01-01 DOI: 10.1002/wnan.70001
Le Wang, Xiaoting Zhang, Lulu He, Yuanyuan Wei, Yujie Zhang, Aiguo Wu, Juan Li
{"title":"Iron-Based Nanomaterials for Modulating Tumor Microenvironment.","authors":"Le Wang, Xiaoting Zhang, Lulu He, Yuanyuan Wei, Yujie Zhang, Aiguo Wu, Juan Li","doi":"10.1002/wnan.70001","DOIUrl":"10.1002/wnan.70001","url":null,"abstract":"<p><p>Iron-based nanomaterials (IBNMs) have been widely applied in biomedicine applications including magnetic resonance imaging, targeted drug delivery, tumor therapy, and so forth, due to their unique magnetism, excellent biocompatibility, and diverse modalities. Further research on its enormous biomedical potential is still ongoing, and its new features are constantly being tapped and demonstrated. Among them, various types of IBNMs have demonstrated significant cancer therapy capabilities by regulating the tumor microenvironment (TME). In this review, a variety of IBNMs including iron oxide-based nanomaterials (IONMs), iron-based complex conjugates (ICCs), and iron-based single iron atom nanomaterials (ISANMs) will be introduced, and their advantages in regulating TME would also be emphasized. Besides, the recent progress of IBNMs for cancer diagnosis and treatment through the strategy of modulating TME will be summarized, including overcoming hypoxia, modulating acidity, decreasing redox species, and immunoregulation. Finally, the challenges and opportunities in this field are briefly discussed. This review is expected to contribute to the future design and development of next-generation TME-modulate IBNMs for cancer treatment.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"17 1","pages":"e70001"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spontaneous Self-Organized Order Emerging From Intrinsically Disordered Protein Polymers.
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2025-01-01 DOI: 10.1002/wnan.70003
Sergio Acosta, Pablo Rodríguez-Alonso, Viktoriya Chaskovska, Julio Fernández-Fernández, José Carlos Rodríguez-Cabello
{"title":"Spontaneous Self-Organized Order Emerging From Intrinsically Disordered Protein Polymers.","authors":"Sergio Acosta, Pablo Rodríguez-Alonso, Viktoriya Chaskovska, Julio Fernández-Fernández, José Carlos Rodríguez-Cabello","doi":"10.1002/wnan.70003","DOIUrl":"10.1002/wnan.70003","url":null,"abstract":"<p><p>Intrinsically disordered proteins (IDPs) are proteins that, despite lacking a defined 3D structure, are capable of adopting dynamic conformations. This structural adaptability allows them to play not only essential roles in crucial cellular processes, such as subcellular organization or transcriptional control, but also in coordinating the assembly of macromolecules during different stages of development. Thus, in order to artificially replicate the complex processes of morphogenesis and their dynamics, it is crucial to have materials that recapitulate the structural plasticity of IDPs. In this regard, intrinsically disordered protein polymers (IDPPs) emerge as promising materials for engineering synthetic condensates and creating hierarchically self-assembled materials. IDPPs exhibit remarkable properties for their use in biofabrication, such as functional versatility, tunable sequence order-disorder, and the ability to undergo liquid-liquid phase separation (LLPS). Recent research has focused on harnessing the intrinsic disorder of IDPPs to design complex protein architectures with tailored properties. Taking advantage of their stimuli-responsiveness and degree of disorder, researchers have developed innovative strategies to control the self-assembly of IDPPs, resulting in the creation of hierarchically organized structures and intricate morphologies. In this review, we aim to provide an overview of the latest advances in the design and application of IDPP-based materials, shedding light on the fundamental principles that control their supramolecular assembly, and discussing their application in the biomedical and nanobiotechnological fields.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"17 1","pages":"e70003"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Progress in Microenvironment-Responsive Nanodrug Delivery Systems for the Targeted Treatment of Rheumatoid Arthritis. 用于类风湿性关节炎靶向治疗的微环境反应性纳米给药系统的最新进展。
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2024-11-01 DOI: 10.1002/wnan.2008
Shuhang Liu, Ming Yang, Han Liu, Yingxue Hao, Dinglin Zhang
{"title":"Recent Progress in Microenvironment-Responsive Nanodrug Delivery Systems for the Targeted Treatment of Rheumatoid Arthritis.","authors":"Shuhang Liu, Ming Yang, Han Liu, Yingxue Hao, Dinglin Zhang","doi":"10.1002/wnan.2008","DOIUrl":"https://doi.org/10.1002/wnan.2008","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that often causes joint pain, swelling, and functional impairments. Drug therapy is the main strategy used to alleviate the symptoms of RA; however, drug therapy may have several adverse effects, such as nausea, vomiting, abdominal pain, diarrhea, gastric ulcers, intestinal bleeding, hypertension, hyperglycemia, infection, fatigue, and indigestion. Moreover, long-term excessive use of drugs may cause liver and kidney dysfunction, as well as thrombocytopenia. Nanodrug delivery systems (NDDSs) can deliver therapeutics to diseased sites with the controlled release of the payload in an abnormal microenvironment, which helps to reduce the side effects of the therapeutics. Abnormalities in the microenvironment, such as a decreased pH, increased expression of matrix metalloproteinases (MMPs), and increased concentrations of reactive oxygen species (ROS), are associated with the progression of RA but also provide an opportunity to achieve microenvironment-responsive therapeutic release at the RA site. Microenvironment-responsive NDDSs may overcome the abovementioned disadvantages of RA therapy. Herein, we comprehensively review recent progress in the development of microenvironment-responsive NDDSs for RA treatment, including pH-, ROS-, MMP-, and multiresponsive NDDSs. Furthermore, the pathological microenvironment is highlighted in detail.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 6","pages":"e2008"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical Nanosensor-Based Emerging Point-Of-Care Tools: Progress and Prospects. 基于电化学纳米传感器的新兴护理点工具:进展与前景。
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2024-11-01 DOI: 10.1002/wnan.2002
Jaqueline Pena-Zacarias, Md Ikhtiar Zahid, Md Nurunnabi
{"title":"Electrochemical Nanosensor-Based Emerging Point-Of-Care Tools: Progress and Prospects.","authors":"Jaqueline Pena-Zacarias, Md Ikhtiar Zahid, Md Nurunnabi","doi":"10.1002/wnan.2002","DOIUrl":"10.1002/wnan.2002","url":null,"abstract":"<p><p>Early detection of disease remains a crucial challenge in medicine. Delayed diagnosis often leads to limited treatment options, increased disease progression, and unfortunately, even death in some cases. To address this, the need for rapid, cost-effective, and noninvasive diagnostic tools is paramount. In recent years, electrochemical nanosensor-based point-of-care diagnostic tools have emerged as promising tools for various fields, with significant interest in their biological and chemical applications. These tiny sensors, utilizing nanoparticles and chemical agents, can detect and monitor physical components like disease biomarkers at the nanoscale, offering a unique advantage rarely found in other diagnostic methods. This unprecedented sensitivity has made them highly sought-after tools for biological applications, particularly in disease diagnosis. This review focuses specifically on electrochemical nanosensors and their potential as diagnostic tools in medicine. We will delve into their properties, applications, current advancements, and existing limitations.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 6","pages":"e2002"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanotechnology-Enabled Targeted Protein Degradation for Cancer Therapeutics. 纳米技术用于癌症治疗的靶向蛋白质降解。
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2024-11-01 DOI: 10.1002/wnan.2020
Wutong Zhao, Yongbin Jiang, Xiufen Li, Hai Wang
{"title":"Nanotechnology-Enabled Targeted Protein Degradation for Cancer Therapeutics.","authors":"Wutong Zhao, Yongbin Jiang, Xiufen Li, Hai Wang","doi":"10.1002/wnan.2020","DOIUrl":"https://doi.org/10.1002/wnan.2020","url":null,"abstract":"<p><p>Targeted protein degradation (TPD) represents an innovative therapeutic strategy that has garnered considerable attention from both academic and industrial sectors due to its promising developmental prospects. Approximately 85% of human proteins are implicated in disease pathogenesis, and the FDA has approved around 400 drugs targeting these disease-related proteins, predominantly enzymes, transcription factors, and non-enzymatic proteins. However, existing therapeutic modalities fail to address certain \"high-value\" targets, such as c-Myc and Ras. The emergence of proteolysis-targeting chimeras (PROTAC) technology has introduced TPD into a new realm. The capability to target non-druggable sites has expanded the therapeutic horizon of protein-based drugs, although challenges related to bioavailability, safety, and adverse side effects have constrained their clinical progression. Nano-delivery systems and emerging TPD modalities, such as molecular glues, lysosome-targeted chimeras (LYTACs), autophagy system compounds (ATTEC), and antibody PROTAC (AbTACs), have mitigated some of these limitations. This paper reviews the latest advancements in TPD, highlighting their applications and benefits in cancer therapy, and concludes with a forward-looking perspective on the future development of this field.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 6","pages":"e2020"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信