转化癌症纳米技术数据分析和用户体验。第二部分:使用大型语言模型提供未来的解决方案。

IF 8.2
Weina Ke, Rui He, Mark A Jensen, Marina A Dobrovolskaia
{"title":"转化癌症纳米技术数据分析和用户体验。第二部分:使用大型语言模型提供未来的解决方案。","authors":"Weina Ke, Rui He, Mark A Jensen, Marina A Dobrovolskaia","doi":"10.1002/wnan.70029","DOIUrl":null,"url":null,"abstract":"<p><p>The advances in cancer nanotechnologies and current efforts focused on data sharing, along with the associated challenges, have been summarized in the first part of this review. Herein, we explore the potential of Large Language Models (LLMs) to enhance user experience, using the federally funded data repository caNanoLab as a case study. By training the LLM on caNanoLab data, we demonstrate its ability to provide more comprehensive search results, well-guided data entry, and a personalized, assisted search experience. We also discuss how integrating LLMs would optimize user experience, making it easier for researchers to navigate complex data and find relevant information. Our findings suggest that LLMs have significant potential to transform cancer nanotechnology data analysis and user experience, potentially paving the way for more efficient and effective advancements in cancer research. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"17 4","pages":"e70029"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370339/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transforming Cancer Nanotechnology Data Analysis and User Experience. Part II: Providing Future Solutions Using Large Language Models.\",\"authors\":\"Weina Ke, Rui He, Mark A Jensen, Marina A Dobrovolskaia\",\"doi\":\"10.1002/wnan.70029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advances in cancer nanotechnologies and current efforts focused on data sharing, along with the associated challenges, have been summarized in the first part of this review. Herein, we explore the potential of Large Language Models (LLMs) to enhance user experience, using the federally funded data repository caNanoLab as a case study. By training the LLM on caNanoLab data, we demonstrate its ability to provide more comprehensive search results, well-guided data entry, and a personalized, assisted search experience. We also discuss how integrating LLMs would optimize user experience, making it easier for researchers to navigate complex data and find relevant information. Our findings suggest that LLMs have significant potential to transform cancer nanotechnology data analysis and user experience, potentially paving the way for more efficient and effective advancements in cancer research. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>\",\"PeriodicalId\":94267,\"journal\":{\"name\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"volume\":\"17 4\",\"pages\":\"e70029\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370339/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wnan.70029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wnan.70029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文第一部分概述了癌症纳米技术的进展和目前在数据共享方面的努力,以及相关的挑战。本文以联邦政府资助的数据存储库caNanoLab为例,探讨了大型语言模型(llm)在增强用户体验方面的潜力。通过对caNanoLab数据的法学硕士培训,我们展示了其提供更全面的搜索结果、良好的指导数据输入以及个性化、辅助搜索体验的能力。我们还讨论了集成法学硕士将如何优化用户体验,使研究人员更容易浏览复杂的数据并找到相关信息。我们的研究结果表明,法学硕士在改变癌症纳米技术数据分析和用户体验方面具有巨大的潜力,可能为癌症研究中更高效和有效的进展铺平道路。本文分类如下:纳米技术在生物学中的应用;纳米系统在生物学中的应用;治疗方法和药物发现;新兴技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transforming Cancer Nanotechnology Data Analysis and User Experience. Part II: Providing Future Solutions Using Large Language Models.

Transforming Cancer Nanotechnology Data Analysis and User Experience. Part II: Providing Future Solutions Using Large Language Models.

Transforming Cancer Nanotechnology Data Analysis and User Experience. Part II: Providing Future Solutions Using Large Language Models.

Transforming Cancer Nanotechnology Data Analysis and User Experience. Part II: Providing Future Solutions Using Large Language Models.

The advances in cancer nanotechnologies and current efforts focused on data sharing, along with the associated challenges, have been summarized in the first part of this review. Herein, we explore the potential of Large Language Models (LLMs) to enhance user experience, using the federally funded data repository caNanoLab as a case study. By training the LLM on caNanoLab data, we demonstrate its ability to provide more comprehensive search results, well-guided data entry, and a personalized, assisted search experience. We also discuss how integrating LLMs would optimize user experience, making it easier for researchers to navigate complex data and find relevant information. Our findings suggest that LLMs have significant potential to transform cancer nanotechnology data analysis and user experience, potentially paving the way for more efficient and effective advancements in cancer research. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信