{"title":"Dynamic Real-Time Biosensing Enabled Biorhythm Tracking for Psychiatric Disorders.","authors":"Karin Huizer, Ivneet Kaur Banga, Ruchita Mahesh Kumar, Sriram Muthukumar, Shalini Prasad","doi":"10.1002/wnan.2021","DOIUrl":null,"url":null,"abstract":"<p><p>This review article explores the transformative potential of dynamic, real-time biosensing in biorhythm tracking for psychiatric disorders. Psychiatric diseases, characterized by a complex, heterogeneous, and multifactorial pathophysiology, pose challenges in both diagnosis and treatment. Common denominators in the pathophysiology of psychiatric diseases include disruptions in the stress response, sleep-wake cycle, energy metabolism, and immune response: all of these are characterized by a strong biorhythmic regulation (e.g., circadian), leading to dynamic changes in the levels of biomarkers involved. Technological and practical limitations have hindered the analysis of such dynamic processes to date. The integration of biosensors marks a paradigm shift in psychiatric research. These advanced technologies enable multiplex, non-invasive, and near-continuous analysis of biorhythmic biomarkers in real time, overcoming the constraints of conventional approaches. Focusing on the regulation of the stress response, sleep/wake cycle, energy metabolism, and immune response, biosensing allows for a deeper understanding of the heterogeneous and multifactorial pathophysiology of psychiatric diseases. The potential applications of nanobiosensing in biorhythm tracking, however, extend beyond observation. Continuous monitoring of biomarkers can provide a foundation for personalized medicine in Psychiatry, and allow for the transition from syndromal diagnostic entities to pathophysiology-based psychiatric diagnoses. This evolution promises enhanced disease tracking, early relapse prediction, and tailored disease management and treatment strategies. As non-invasive biosensing continues to advance, its integration into biorhythm tracking holds promise not only to unravel the intricate etiology of psychiatric disorders but also for ushering in a new era of precision medicine, ultimately improving the outcomes and quality of life for individuals grappling with these challenging conditions.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 6","pages":"e2021"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wnan.2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This review article explores the transformative potential of dynamic, real-time biosensing in biorhythm tracking for psychiatric disorders. Psychiatric diseases, characterized by a complex, heterogeneous, and multifactorial pathophysiology, pose challenges in both diagnosis and treatment. Common denominators in the pathophysiology of psychiatric diseases include disruptions in the stress response, sleep-wake cycle, energy metabolism, and immune response: all of these are characterized by a strong biorhythmic regulation (e.g., circadian), leading to dynamic changes in the levels of biomarkers involved. Technological and practical limitations have hindered the analysis of such dynamic processes to date. The integration of biosensors marks a paradigm shift in psychiatric research. These advanced technologies enable multiplex, non-invasive, and near-continuous analysis of biorhythmic biomarkers in real time, overcoming the constraints of conventional approaches. Focusing on the regulation of the stress response, sleep/wake cycle, energy metabolism, and immune response, biosensing allows for a deeper understanding of the heterogeneous and multifactorial pathophysiology of psychiatric diseases. The potential applications of nanobiosensing in biorhythm tracking, however, extend beyond observation. Continuous monitoring of biomarkers can provide a foundation for personalized medicine in Psychiatry, and allow for the transition from syndromal diagnostic entities to pathophysiology-based psychiatric diagnoses. This evolution promises enhanced disease tracking, early relapse prediction, and tailored disease management and treatment strategies. As non-invasive biosensing continues to advance, its integration into biorhythm tracking holds promise not only to unravel the intricate etiology of psychiatric disorders but also for ushering in a new era of precision medicine, ultimately improving the outcomes and quality of life for individuals grappling with these challenging conditions.