生物材料介导的铁凋亡代谢调节用于癌症免疫疗法

Yingqi Liu, Dan Tao, Menghuan Li, Zhong Luo
{"title":"生物材料介导的铁凋亡代谢调节用于癌症免疫疗法","authors":"Yingqi Liu, Dan Tao, Menghuan Li, Zhong Luo","doi":"10.1002/wnan.2010","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is a lipid peroxidation-driven cell death route and has attracted enormous interest for cancer therapy. Distinct from other forms of regulated cell death, its process is involved with multiple metabolic pathways including lipids, bioenergetics, iron, and so on, which influence cancer cell ferroptosis sensitivity and communication with the immune cells in the tumor microenvironment. Development of novel technologies for harnessing the ferroptosis-associated metabolic regulatory network would profoundly improve our understanding of the immune responses and enhance the efficacy of ferroptosis-dependent immunotherapy. Interestingly, the recent advances in bio-derived material-based therapeutic platforms offer novel opportunities to therapeutically modulate tumor metabolism through the in situ delivery of molecular or material cues, which not only allows the tumor-specific elicitation of ferroptosis but also holds promise to maximize their immunostimulatory impact. In this review, we will first dissect the crosstalk between tumor metabolism and ferroptosis and its impact on the immune regulation in the tumor microenvironment, followed by the comprehensive analysis on the recent progress in biomaterial-based metabolic regulatory strategies for evoking ferroptosis-mediated antitumor immunity. A perspective section is also provided to discuss the challenges in metabolism-regulating biomaterials for ferroptosis-immunotherapy. We envision that this review may provide new insights for improving tumor immunotherapeutic efficacy in the clinic.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 6","pages":"e2010"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomaterial-Mediated Metabolic Regulation of Ferroptosis for Cancer Immunotherapy.\",\"authors\":\"Yingqi Liu, Dan Tao, Menghuan Li, Zhong Luo\",\"doi\":\"10.1002/wnan.2010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis is a lipid peroxidation-driven cell death route and has attracted enormous interest for cancer therapy. Distinct from other forms of regulated cell death, its process is involved with multiple metabolic pathways including lipids, bioenergetics, iron, and so on, which influence cancer cell ferroptosis sensitivity and communication with the immune cells in the tumor microenvironment. Development of novel technologies for harnessing the ferroptosis-associated metabolic regulatory network would profoundly improve our understanding of the immune responses and enhance the efficacy of ferroptosis-dependent immunotherapy. Interestingly, the recent advances in bio-derived material-based therapeutic platforms offer novel opportunities to therapeutically modulate tumor metabolism through the in situ delivery of molecular or material cues, which not only allows the tumor-specific elicitation of ferroptosis but also holds promise to maximize their immunostimulatory impact. In this review, we will first dissect the crosstalk between tumor metabolism and ferroptosis and its impact on the immune regulation in the tumor microenvironment, followed by the comprehensive analysis on the recent progress in biomaterial-based metabolic regulatory strategies for evoking ferroptosis-mediated antitumor immunity. A perspective section is also provided to discuss the challenges in metabolism-regulating biomaterials for ferroptosis-immunotherapy. We envision that this review may provide new insights for improving tumor immunotherapeutic efficacy in the clinic.</p>\",\"PeriodicalId\":94267,\"journal\":{\"name\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"volume\":\"16 6\",\"pages\":\"e2010\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wnan.2010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wnan.2010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铁氧体中毒是一种脂质过氧化驱动的细胞死亡途径,在癌症治疗中引起了极大的兴趣。与其他形式的调节性细胞死亡不同,它的过程涉及脂质、生物能、铁等多种代谢途径,这些途径影响着癌细胞的铁氧化敏感性以及与肿瘤微环境中免疫细胞的交流。开发新的技术来利用与铁突变相关的代谢调控网络,将极大地提高我们对免疫反应的理解,并增强依赖铁突变的免疫疗法的疗效。有趣的是,基于生物衍生材料的治疗平台的最新进展为通过原位传递分子或材料线索来调节肿瘤代谢提供了新的治疗机会,这不仅能诱发肿瘤特异性铁变态反应,而且有望最大限度地发挥其免疫刺激作用。在这篇综述中,我们将首先剖析肿瘤代谢与铁变态反应之间的相互关系及其对肿瘤微环境中免疫调节的影响,然后全面分析基于生物材料的代谢调控策略在唤起铁变态反应介导的抗肿瘤免疫方面的最新进展。本综述还提供了一个展望部分,讨论了用于铁变态反应免疫疗法的代谢调节生物材料所面临的挑战。我们希望这篇综述能为临床提高肿瘤免疫治疗效果提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomaterial-Mediated Metabolic Regulation of Ferroptosis for Cancer Immunotherapy.

Ferroptosis is a lipid peroxidation-driven cell death route and has attracted enormous interest for cancer therapy. Distinct from other forms of regulated cell death, its process is involved with multiple metabolic pathways including lipids, bioenergetics, iron, and so on, which influence cancer cell ferroptosis sensitivity and communication with the immune cells in the tumor microenvironment. Development of novel technologies for harnessing the ferroptosis-associated metabolic regulatory network would profoundly improve our understanding of the immune responses and enhance the efficacy of ferroptosis-dependent immunotherapy. Interestingly, the recent advances in bio-derived material-based therapeutic platforms offer novel opportunities to therapeutically modulate tumor metabolism through the in situ delivery of molecular or material cues, which not only allows the tumor-specific elicitation of ferroptosis but also holds promise to maximize their immunostimulatory impact. In this review, we will first dissect the crosstalk between tumor metabolism and ferroptosis and its impact on the immune regulation in the tumor microenvironment, followed by the comprehensive analysis on the recent progress in biomaterial-based metabolic regulatory strategies for evoking ferroptosis-mediated antitumor immunity. A perspective section is also provided to discuss the challenges in metabolism-regulating biomaterials for ferroptosis-immunotherapy. We envision that this review may provide new insights for improving tumor immunotherapeutic efficacy in the clinic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信