Katsuya Komiyama, Maya Allard, Corentin Eschenbrenner, Clémence Sicard, Ahmed Hamraoui, Francisco M Fernandes
{"title":"Ice templating water-stable macroporous polysaccharide hydrogels to mimic plant stems.","authors":"Katsuya Komiyama, Maya Allard, Corentin Eschenbrenner, Clémence Sicard, Ahmed Hamraoui, Francisco M Fernandes","doi":"10.1039/d4tb02204a","DOIUrl":"https://doi.org/10.1039/d4tb02204a","url":null,"abstract":"<p><p>Water-stable macroporous hydrogels, inspired by the structural and chemical characteristics of plant stems, are expected to open a wide range of possibilities in soft materials for passive liquid transport. However, obtaining efficient materials for these applications still poses a major challenge due to the complexity of shaping hydrogels at the relevant scale-length. Here, water-stable macroporous hydrogels were fabricated using alginate and TEMPO-oxidized cellulose <i>via</i> a new approach involving ice templating and topotactic ion-crosslinking with Ca<sup>2+</sup>. This approach fully avoids the energy-intensive lyophilization process and results in composite hydrogels with pore sizes akin to those found in celery xylem, a model we chose for plant stems. Importantly, the pore size could be tailored by adjusting both the ice-growth velocities and the ratios of alginate to oxidized cellulose. The resulting hydrogels displayed remarkable water stability along with viscoelastic properties and wettability that depend on the alginate and oxidized cellulose ratios. Mechanical properties, such as compression stress and toughness, consistently increased with higher alginate contents. In addition, liquid transport measurements on crosslinked hydrogels with varying compositions and ice growth velocities revealed rising speeds comparable to those observed in celery, confirming the ability of polysaccharide-based hydrogels obtained by ice templating and topotactic crosslinking as relevant materials to mimic the function of plant stems. Due to their intrinsic biocompatibility, the materials presented here offer significant potential for developing soft liquid transport systems suited for biological settings, with promising applications in both environmental and bioengineering fields.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SeongHoon Jo, Yu-Jin Kim, Taek Hwang, Se Youn Jang, So-Jin Park, Seongryeol Ye, Youngmee Jung, Jin Yoo
{"title":"Injectable ultrathin porous membranes harnessing shape memory polymers for retinal tissue engineering.","authors":"SeongHoon Jo, Yu-Jin Kim, Taek Hwang, Se Youn Jang, So-Jin Park, Seongryeol Ye, Youngmee Jung, Jin Yoo","doi":"10.1039/d4tb02287d","DOIUrl":"https://doi.org/10.1039/d4tb02287d","url":null,"abstract":"<p><p>Age-related macular degeneration (AMD) is a leading cause of vision loss, characterized by the progressive degeneration of retinal cells, particularly retinal pigment epithelial (RPE) cells. Conventional treatments primarily focus on slowing disease progression without providing a cure. Recent advances in tissue engineering and cell-based therapies offer promising avenues for regenerating retinal tissue and restoring vision. In this study, we developed ultrathin, nanoporous membrane scaffolds designed to mimic Bruch's membrane (BrM) for RPE cell transplantation using vapor-induced phase separation. These scaffolds, fabricated from a blend of poly(L-lactide-<i>co</i>-ε-caprolactone) (PLCL) and poly(lactic-<i>co</i>-glycolic acid) (PLGA), exhibited favorable topography, biocompatibility, and shape-memory properties. <i>In vitro</i> experiments confirmed that the nanoporous topography effectively supports the formation of RPE monolayers with intact tight junctions. Additionally, the shape-memory characteristic enables the membrane to self-expand at body temperature (37 °C), facilitating minimally invasive delivery <i>via</i> injection. ARPE-19 cell-attached nanothin membranes successfully demonstrated shape-recovery properties and were deliverable through a catheter in an <i>ex vivo</i> model. Our findings suggest that the developed scaffolds provide a promising approach for retinal tissue engineering and could significantly contribute to advanced treatments for AMD and other retinal degenerative diseases.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiuping Wan, Caijie Zhang, Pengyu Lei, Hanbing Wang, Rongbing Chen, Qinsi Yang, Yongwei Cheng, Wei Wu, Da Sun, Xiaofei Hong
{"title":"Precision therapeutics for inflammatory bowel disease: advancing ROS-responsive nanoparticles for targeted and multifunctional drug delivery.","authors":"Xiuping Wan, Caijie Zhang, Pengyu Lei, Hanbing Wang, Rongbing Chen, Qinsi Yang, Yongwei Cheng, Wei Wu, Da Sun, Xiaofei Hong","doi":"10.1039/d4tb02868f","DOIUrl":"https://doi.org/10.1039/d4tb02868f","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is a severe chronic intestinal disorder with a rising global incidence. Current therapies, including the delivery of anti-inflammatory drugs and probiotics, face significant challenges in terms of safety, stability, and efficacy. In IBD patients, the activity of antioxidant enzymes (<i>e.g.</i>, superoxide dismutase, glutathione peroxidase, and glutathione reductase) is reduced at the site of intestinal inflammation, leading to the accumulation of reactive oxygen species (ROS). This accumulation damages the intestinal mucosa, disrupts tight junctions between cells, and compromises the integrity of the intestinal barrier, exacerbating IBD symptoms. Therefore, nanoparticles responsive to ROS and capable of mimicking antioxidant enzyme activity, such as boronates, polydopamine, sulfides, and metal nanozymes, have emerged as promising tools. These nanoparticles can respond to elevated ROS levels in inflamed intestinal regions and release drugs to effectively neutralize ROS, making them ideal candidates for IBD treatment. This review discusses the application of various ROS-responsive nanomaterial delivery systems in IBD therapy, highlights current challenges, and outlines future research directions. Furthermore, we explore the \"layered programmable delivery\" strategy, which combines ROS-responsive nanoparticles with pH-responsive and cell membrane-targeted nanoparticles. This strategy has the potential to overcome the limitations of single-mechanism targeted drug delivery, enabling multi-range and multi-functional treatment approaches that significantly enhance delivery efficiency, providing new insights for the future of localized IBD treatment.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143190483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pt(IV) prodrug as a potent nanosonosensitizer self-cyclically amplifies sonodynamic-chemotherapy with dually reversing cisplatin resistance.","authors":"Wenxin Li, Ziyi Lin, Jiahui Liu, Jiarui Zhang, Yuxuan Li, Yian Liu, Xinru Yuan, Huimin Li, Heyun Shen","doi":"10.1039/d4tb02615b","DOIUrl":"https://doi.org/10.1039/d4tb02615b","url":null,"abstract":"<p><p>Although sonodynamic therapy (SDT) has shown promising advancements in combination with chemotherapy, it frequently necessitates the requirement of conventional sonosensitizers and chemotherapeutic agents, engendering intricate systems and potential drug resistance. Herein, we fabricated a potent Pt(IV)-poly(amino acid) coordination nanosonosensitizer (PHPt) with dual reversal of cisplatin resistance, producing abundant <sup>1</sup>O<sub>2</sub> and ˙OH upon ultrasound irradiation without the use of any external sonosensitizers. The Pt(IV) prodrug in PHPt efficiently reduced to cisplatin through SDT-induced ˙H and glutathione (GSH), inducing ˙OH accumulation and CDDP release, which further amplified the oxidative stress on SDT. Moreover, the high GSH depletion performance of PHPt and administration of aspirin effectively inhibited cisplatin detoxification and activation of the nuclear factor-kappa B pathway, respectively. This cooperative action between the Pt(IV) prodrug and SDT in the tumor microenvironment promoted self-cyclic amplification of sonodynamic-chemotherapy, achieving a significant tumor inhibition rate of 99.4%. Thus, this study offers novel perspectives on the sonosensitizer development and cisplatin application in SDT.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mixed-valence vanadium-doped mesoporous bioactive glass for treatment of tumor-associated bone defects.","authors":"Xin Liu, Peng Zhang, Mengjie Xu, Zihao Zhao, Xing Yin, Ximing Pu, Juan Wang, Xiaoming Liao, Zhongbing Huang, Shunze Cao, Guangfu Yin","doi":"10.1039/d4tb02290d","DOIUrl":"https://doi.org/10.1039/d4tb02290d","url":null,"abstract":"<p><p>Vanadium is a bioactive trace element with variable valence. Its pentavalent form has been confirmed to be capable of predominantly regulating the early and mid-stage osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) without tumor inhibition, while its tetravalent form exhibits tumor inhibition but only primarily modulates late osteogenic differentiation and angiogenesis. In this study, a multifunctional bone tissue scaffold consisting of mixed-valence vanadium-doped mesoporous bioactive glass and poly(lactic-<i>co</i>-glycolic acid) (V(IV/V)-MBG/PLGA) was developed to simultaneously inhibit the recurrence of osteosarcoma and promote the regeneration of operative bone defects. The <i>in vitro</i> results showed that the V(IV) and V(V) species could be sustainably released from V(IV/V)-MBG and complementarily enhance the proliferation, osteogenic differentiation, and mineralization of BMSCs by activating multiple signaling pathways throughout the whole osteogenesis process. More importantly, the co-existence of mixed-valent vanadium species was able to continuously stimulate the generation of excessive ROS and the depletion of GSH by synergistically supplying an appropriate ratio of V(IV) and V(V) to thermodynamically and kinetically maintain the stable self-circulation of the valence state alteration, thus inducing UMR-106 cell death. In a rat model, V(IV/V)-MBG/PLGA scaffolds effectively suppressed tumor invasion and promoted bone regeneration. These results suggest that V(IV/V)-MBG/PLGA scaffolds are a promising strategy for treating tumor-associated bone defects, offering dual tumor inhibition and bone regeneration.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143190335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qing Ye, Min Zhang, Qianrui Li, Lingling Jia, Yuan Gao, He Yuan, Jiyao Li
{"title":"Regulation of the diabetic immune microenvironment by metformin-loaded strontium-doped mesoporous bioactive glass facilitates bone regeneration.","authors":"Qing Ye, Min Zhang, Qianrui Li, Lingling Jia, Yuan Gao, He Yuan, Jiyao Li","doi":"10.1039/d4tb01778a","DOIUrl":"https://doi.org/10.1039/d4tb01778a","url":null,"abstract":"<p><p>Chronic inflammation and oxidative stress in the diabetic microenvironment often hinder the healing of bone defects. Metformin (MET), the first-line diabetes medication, was shown to alter macrophage polarization toward an anti-inflammatory M2 phenotype, while simultaneously suppressing excessive reactive oxygen species (ROS) generation. Strontium-doped mesoporous bioactive glasses (SrMBG) also showed promising benefits in promoting bone regeneration. Aiming to improve the diabetic immune microenvironment within bone defects, in this study we loaded SrMBG mesopores with increasing amounts of MET. MET-loaded SrMBG (MET/SrMBG) extracts promoted macrophage differentiation toward the M2 phenotype and reduced ROS production <i>in vitro.</i> The possibility of facilitating osteogenic differentiation of bone marrow stromal cells (BMSCs) <i>in vivo</i> led us to develop 3D-printed MET/SrMBG scaffolds. Experiments utilizing a critical-size calvarium defect model in diabetic rats confirmed that implanting the MET/SrMBG scaffold enhanced bone repair owing to the effects of MET regulating M2 type macrophage polarization and mitigating oxidative stress to improve the inflammatory microenvironment.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in cuproptosis harnessing copper-based nanomaterials for cancer therapy.","authors":"Yanqiang Yang, Chen Dong, Xuehua Ma, Yanan Wang, Zhouhua Li, Yuan Xu, Tianxiang Chen, Changyong Gao, Xiaoqun Ye, Aiguo Wu, Xinyi Zhang","doi":"10.1039/d4tb02746a","DOIUrl":"https://doi.org/10.1039/d4tb02746a","url":null,"abstract":"<p><p>Cuproptosis, a newly identified programmed cell death form, is characterized by excessive copper accumulation in cells, resulting in mitochondria damage and toxic protein stress, ultimately causing cell death. Given the considerable therapeutic promise of copper toxicity in cancer treatment, copper-based nanomaterials that induce copper death have attracted interest as a promising approach for tumor therapy. This review comprehensively introduces the mechanisms of cuproptosis and the associated regulatory genes, including both positive and negative regulatory regulators, and systematically summarizes the application of various nanoparticles in inducing cuproptosis, ranging from inorganic copper compounds to delivery systems. These nanoparticles offer significant advantages, such as improving copper absorption, extending the duration of effectiveness, enhancing the precision of copper release, increasing biocompatibility, and serving as enhancers in combination therapy. In conclusion, the authors present a detailed overview and insights into the current research directions of nanoplatforms that facilitate copper-induced cancer treatment, establishing a foundation for the future development of effective nanomedicines that induce cuproptosis and offering new possibilities and treatment strategies for tumor therapy.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danish Ahmad Shergujri, Murtaza Ahmad Khanday, Aisha Noor, Mohd Adnan, Iqra Arif, Syed Naiem Raza, Reyaz Hassan Mir, Nisar Ahmad Khan
{"title":"Next-generation biopolymer gels: innovations in drug delivery and theranostics.","authors":"Danish Ahmad Shergujri, Murtaza Ahmad Khanday, Aisha Noor, Mohd Adnan, Iqra Arif, Syed Naiem Raza, Reyaz Hassan Mir, Nisar Ahmad Khan","doi":"10.1039/d4tb02068e","DOIUrl":"https://doi.org/10.1039/d4tb02068e","url":null,"abstract":"<p><p>Biopolymers or natural polymers like chitosan, cellulose, alginate, collagen, <i>etc.</i> have gained significant interest recently due to their remarkable tunable properties that make them appropriate for a variety of applications & play a crucial role in everyday life. The features of biopolymers which include biodegradability, biocompatibility, sustainability, affordability, & availability are vital for creating products for use in biomedical fields. Apart from these characteristics, smart or stimuli-responsive biopolymers also show a distinctive property of being susceptible to various factors like pH, temperature, light intensity, & electrical or magnetic fields. The current review would present a brief idea about smart biopolymer gels along with their biomedical applications. The use of smart biopolymers gels as theranostic agents are also discussed in the present review. This review also focuses on the application of biopolymers in the fields of drug delivery, cancer treatment, tissue engineering & wound healing. These areas demonstrate the development and utilization of different types of biopolymers in current biomedical applications.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143190477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}