烷基胺配体自组装单层增强CuPd双金属纳米酶的fenton类生物催化作用。

Fangming Zhang, Jingxia Xu, Zhuyuan Peng, Guofeng Li, Lingyun Zhao, Wensheng Xie, Xing Wang
{"title":"烷基胺配体自组装单层增强CuPd双金属纳米酶的fenton类生物催化作用。","authors":"Fangming Zhang, Jingxia Xu, Zhuyuan Peng, Guofeng Li, Lingyun Zhao, Wensheng Xie, Xing Wang","doi":"10.1039/d5tb00443h","DOIUrl":null,"url":null,"abstract":"<p><p>The synergistic effect of copper and palladium makes CuPd bimetallic nanozymes potential candidates for tumor biocatalysis. However, their practical catalytic activity is closely related to their surface modification and structure. In this study, CuPd nanozymes were prepared by a one-step reduction method using various surface ligands (decamethylamine (DA), dodecamethylamine (DDA), hexadecamethylamine (HDA), and octadecamethylamine (ODA)) with different alkylamine lengths in order to study the effects of surface self-assembled monolayers (SAMs) formed by ligands. TEM, XPS, and XRD results showed that all four nanozymes were similar in their structures, sizes, and compositions. However, the as-synthesized CuPd@DA and CuPd@HDA presented higher Fenton-like activity due to the lower steric hindrance caused by ordered and thinner SAMs. In contrast, both CuPd@DDA and CuPd@ODA exhibited weak biocatalytic activity for the thicker and stacked SAMs because of the long length of alkylamine ligands. <i>In vitro</i> anti-tumor cytotoxicity evaluation showed lower IC<sub>50</sub> values for CuPd@DA (104.6 μg mL<sup>-1</sup>) and CuPd@HDA (118.6 μg mL<sup>-1</sup>), and higher values for CuPd@DA and CuPd@HDA, demonstrating the biocatalytic differences caused by surface SAMs. This study provides unique insights for optimizing the biocatalytic effect of bimetallic nanozymes in the perspective of surface SAMs.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Fenton-like biocatalysis of CuPd bimetallic nanozymes by alkylamine ligand self-assembled monolayers.\",\"authors\":\"Fangming Zhang, Jingxia Xu, Zhuyuan Peng, Guofeng Li, Lingyun Zhao, Wensheng Xie, Xing Wang\",\"doi\":\"10.1039/d5tb00443h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The synergistic effect of copper and palladium makes CuPd bimetallic nanozymes potential candidates for tumor biocatalysis. However, their practical catalytic activity is closely related to their surface modification and structure. In this study, CuPd nanozymes were prepared by a one-step reduction method using various surface ligands (decamethylamine (DA), dodecamethylamine (DDA), hexadecamethylamine (HDA), and octadecamethylamine (ODA)) with different alkylamine lengths in order to study the effects of surface self-assembled monolayers (SAMs) formed by ligands. TEM, XPS, and XRD results showed that all four nanozymes were similar in their structures, sizes, and compositions. However, the as-synthesized CuPd@DA and CuPd@HDA presented higher Fenton-like activity due to the lower steric hindrance caused by ordered and thinner SAMs. In contrast, both CuPd@DDA and CuPd@ODA exhibited weak biocatalytic activity for the thicker and stacked SAMs because of the long length of alkylamine ligands. <i>In vitro</i> anti-tumor cytotoxicity evaluation showed lower IC<sub>50</sub> values for CuPd@DA (104.6 μg mL<sup>-1</sup>) and CuPd@HDA (118.6 μg mL<sup>-1</sup>), and higher values for CuPd@DA and CuPd@HDA, demonstrating the biocatalytic differences caused by surface SAMs. This study provides unique insights for optimizing the biocatalytic effect of bimetallic nanozymes in the perspective of surface SAMs.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d5tb00443h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00443h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铜和钯的协同作用使铜钯双金属纳米酶成为肿瘤生物催化的潜在候选物。然而,它们的实际催化活性与其表面修饰和结构密切相关。本研究采用不同长度的烷基胺表面配体(十甲基胺(DA)、十二甲基胺(DDA)、十六甲基胺(HDA)、十八甲基胺(ODA)),通过一步还原法制备CuPd纳米酶,研究配体形成的表面自组装单层膜(sam)的影响。TEM、XPS和XRD结果表明,这四种纳米酶在结构、大小和组成上相似。然而,合成的CuPd@DA和CuPd@HDA具有更高的类芬顿活性,这是由于有序和较薄的SAMs造成的较低的位阻。相比之下,由于烷基胺配体的长度较长,CuPd@DDA和CuPd@ODA对较厚和堆叠的sam表现出较弱的生物催化活性。体外抗肿瘤细胞毒性评价显示,CuPd@DA (104.6 μg mL-1)和CuPd@HDA (118.6 μg mL-1)的IC50值较低,CuPd@DA和CuPd@HDA的IC50值较高,表明表面SAMs引起的生物催化差异。本研究为从表面SAMs的角度优化双金属纳米酶的生物催化效果提供了独特的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Fenton-like biocatalysis of CuPd bimetallic nanozymes by alkylamine ligand self-assembled monolayers.

The synergistic effect of copper and palladium makes CuPd bimetallic nanozymes potential candidates for tumor biocatalysis. However, their practical catalytic activity is closely related to their surface modification and structure. In this study, CuPd nanozymes were prepared by a one-step reduction method using various surface ligands (decamethylamine (DA), dodecamethylamine (DDA), hexadecamethylamine (HDA), and octadecamethylamine (ODA)) with different alkylamine lengths in order to study the effects of surface self-assembled monolayers (SAMs) formed by ligands. TEM, XPS, and XRD results showed that all four nanozymes were similar in their structures, sizes, and compositions. However, the as-synthesized CuPd@DA and CuPd@HDA presented higher Fenton-like activity due to the lower steric hindrance caused by ordered and thinner SAMs. In contrast, both CuPd@DDA and CuPd@ODA exhibited weak biocatalytic activity for the thicker and stacked SAMs because of the long length of alkylamine ligands. In vitro anti-tumor cytotoxicity evaluation showed lower IC50 values for CuPd@DA (104.6 μg mL-1) and CuPd@HDA (118.6 μg mL-1), and higher values for CuPd@DA and CuPd@HDA, demonstrating the biocatalytic differences caused by surface SAMs. This study provides unique insights for optimizing the biocatalytic effect of bimetallic nanozymes in the perspective of surface SAMs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信